Borax

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Borax
Borax crystals
Ball-and-stick model of the unit cell of borax decahydrate
Names
IUPAC name
Sodium tetraborate decahydrate
Identifiers
1303-96-4 (decahydrate) YesY
ChEBI CHEBI:86222 N
ChEMBL ChEMBL1076681 N
ChemSpider 17339255 YesY
EC Number 215-540-4
Jmol 3D model Interactive image
UNII 91MBZ8H3QO YesY
  • InChI=1S/B4O7.2Na.10H2O/c5-1-7-3-9-2(6)10-4(8-1)11-3;;;;;;;;;;;;/h;;;10*1H2/q-2;2*+1;;;;;;;;;; YesY
    Key: CDMADVZSLOHIFP-UHFFFAOYSA-N YesY
  • InChI=1/B4O7.2Na.10H2O/c5-1-7-3-9-2(6)10-4(8-1)11-3;;;;;;;;;;;;/h;;;10*1H2/q-2;2*+1;;;;;;;;;;
    Key: CDMADVZSLOHIFP-UHFFFAOYAP
  • [Na+].[Na+].[O-]B1OB2OB([O-])OB(O1)O2.O.O.O.O.O.O.O.O.O.O
Properties
Na2B4O7·10H2O or Na2[B4O5(OH)4]·8H2O
Molar mass 381.38 (decahydrate)
201.22 (anhydrate)
Appearance white solid
Density 1.73 g/cm3 (solid)
Melting point 743 °C (1,369 °F; 1,016 K) anhydrate[1]
Boiling point 1,575 °C (2,867 °F; 1,848 K)
−85.0·10−6 cm3/mol
Structure
Monoclinic Prismatic
C2/c
2/m
Pharmacology
ATC code S01AX07
Vapor pressure {{{value}}}
Related compounds
Other anions
Sodium aluminate; sodium gallate
Other cations
Potassium tetraborate
Related compounds
Boric acid, sodium perborate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Borax, also known as sodium borate, sodium tetraborate, or disodium tetraborate, is an important boron compound, a mineral, and a salt of boric acid. Powdered borax is white, consisting of soft colorless crystals that dissolve easily in water.

Borax has a wide variety of uses. It is a component of many detergents, cosmetics, and enamel glazes. It is also used to make buffer solutions in biochemistry, as a fire retardant, as an anti-fungal compound, in the manufacture of fiberglass, as a flux in metallurgy, neutron-capture shields for radioactive sources, a texturing agent in cooking, as a precursor for other boron compounds, and along with its inverse, boric acid, is useful as an insecticide.

In artisanal gold mining, the borax method is sometimes used as a substitute for toxic mercury in the gold extraction process. Borax was reportedly used by gold miners in parts of the Philippines in the 1900s.[2]

The term borax is used for a number of closely related minerals or chemical compounds that differ in their crystal water content, but usually refers to the decahydrate. Commercially sold borax is partially dehydrated.

Borax was first discovered in dry lake beds in Tibet and was imported via the Silk Road to the Arabian Peninsula in the 8th Century AD.[3] Borax first came into common use in the late 19th century when Francis Marion Smith's Pacific Coast Borax Company began to market and popularize a large variety of applications under the 20 Mule Team Borax trademark, named for the method by which borax was originally hauled out of the California and Nevada deserts in large enough quantities to make it cheap and commonly available.[4][5]

Chemistry

The structure of the anion [B4O5(OH)4]2− in borax

The term borax is often used for a number of closely related minerals or chemical compounds that differ in their crystal water content:

  • Anhydrous borax (Na2B4O7)
  • Borax pentahydrate (Na2B4O7·5H2O)
  • Borax decahydrate (Na2B4O7·10H2O)

Borax is generally described as Na2B4O7·10H2O. However, it is better formulated as Na2[B4O5(OH)4]·8H2O, since borax contains the [B4O5(OH)4]2− ion. In this structure, there are two four-coordinate boron atoms (two BO4 tetrahedra) and two three-coordinate boron atoms (two BO3 triangles).

Borax is also easily converted to boric acid and other borates, which have many applications. Its reaction with hydrochloric acid to form boric acid is:

Na2B4O7·10H2O + 2 HCl → 4 H3BO3 + 2 NaCl + 5 H2O

The "decahydrate" is sufficiently stable to find use as a primary standard for acid base titrimetry.[6]

When borax is added to a flame, it produces a yellow green color.[7] Borax is not used for this purpose in fireworks due to the overwhelming yellow color of sodium. Boric acid is used to color methanol flames a transparent green.

Etymology

The English word borax is Latinized: the Middle English form was boras, from Old French boras, bourras. That may have been from medieval Latin baurach (another English spelling), borac(-/um/em), borax, or maybe directly from the Arabic, along with Spanish borrax (> borraj) and Italian borrace, in the 9th century. The Arabic was (is) بورق bauraq/bwrk ("natron"), a word also used for borax. Traditional Arabic dictionaries say that it derives from the verb "to glisten", which is also written بورق bwrq, but it seems to actually derive from the Persian būrah (بوره "borax").[8] The word borax is found in Arabic būraq (بورق), meaning "white"; which is from Middle Persian bwrk, which might have meant potassium nitrate or another fluxing agent, now known as būrah (بوره). Another name for borax is tincal, from Sanskrit.[3]

The word tincal /ˈtɪŋkəl/ "tinkle", or tincar /ˈtɪŋkər/ "tinker", refers to crude borax, before it is purified, as mined from lake deposits in Tibet, Persia, and other parts of Asia. The word was adopted in the 17th century from Malay tingkal and from Urdu/Persian/Arabic تنکار‎ tinkār/tankār; thus the two forms in English. These all appear to be related to the Sanskrit टांकण ṭānkaṇa.[9]

Natural sources

Borax "cottonball"

Borax occurs naturally in evaporite deposits produced by the repeated evaporation of seasonal lakes. The most commercially important deposits are found in Turkey; Boron, California; and Searles Lake, California. Also, borax has been found at many other locations in the Southwestern United States, the Atacama desert in Chile, newly discovered deposits in Bolivia, and in Tibet and Romania. Borax can also be produced synthetically from other boron compounds. Naturally occurring borax (known by the trade name Rasorite–46 in the United States and many other countries) is refined by a process of recrystallization.[10]

Traction steam engine hauling borax, Death Valley, California, 1904

Uses

Borax-based laundry detergent

Household products

Borax is used in various household laundry and cleaning products,[11] including the "20 Mule Team Borax" laundry booster and "Boraxo" powdered hand soap. Despite its name, "Borateem" laundry bleach no longer contains borax or other boron compounds. Borax is also present in some tooth bleaching formulas.[12]

pH buffer

Borate ions (commonly supplied as boric acid) are used in biochemical and chemical laboratories to make buffers, e.g. for gel electrophoresis of DNA and RNA, such as TBE buffer (borate buffered tris-hydroxymethylaminomethonium)[13][14][15] or the newer SB buffer or BBS buffer (borate buffered saline) in coating procedures. Borate buffers (usually at pH 8) are also used as preferential equilibration solution in dimethyl pimelimidate (DMP) based crosslinking reactions.

Co-complexing agent

Borax as a source of borate has been used to take advantage of the co-complexing ability of borate with other agents in water to form complex ions with various substances. Borate and a suitable polymer bed are used to chromatograph non-glycosylated hemoglobin differentially from glycosylated hemoglobin (chiefly HbA1c), which is an indicator of long term hyperglycemia in diabetes mellitus.

Water-softening agent

Borax alone does not have a high affinity for the hardness cations, although it has been used for that purpose. Its chemical equation for water-softening is given below:

Ca2+ (aq) + Na2B4O7 (aq)CaB4O7 (s)↓ + 2 Na+ (aq)
Mg2+ (aq) + Na2B4O7 (aq)MgB4O7 (s)↓ + 2 Na+ (aq)

The sodium ions introduced do not make water ‘hard’. This method is suitable for removing both temporary and permanent types of hardness.

Flux

A mixture of borax and ammonium chloride is used as a flux when welding iron and steel. It lowers the melting point of the unwanted iron oxide (scale), allowing it to run off. Borax is also used mixed with water as a flux when soldering jewelry metals such as gold or silver. It allows the molten solder to flow evenly over the joint in question. Borax is also a good flux for "pre-tinning" tungsten with zinc – making the tungsten soft-solderable.[16] Borax is often used as a flux for forge welding.

Small-scale gold mining

Old steam tractor and borax wagons, Death Valley

Borax is replacing mercury as the preferred method for extracting gold in small-scale mining facilities. The method is called the borax method and is used in the Philippines.[17]

Flubber

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A rubbery polymer sometimes called Slime, Flubber, gluep or glurch (or erroneously called Silly Putty, which is based on silicone polymers), can be made by cross-linking polyvinyl alcohol with borax. Making flubber from polyvinyl acetate-based glues, such as Elmer's Glue, and borax is a common elementary-science demonstration.[18][19]

Food additive

Borax, given the E number E285, is used as a food additive in some countries, but is banned in some countries, like the U.S., and Thailand. As a consequence, certain foods, such as caviar, produced for sale in the US contain higher levels of salt to assist preservation.[20] Its use as a cooking ingredient is to add a firm rubbery texture to the food, or as a preservative. In oriental cooking it is mostly used for its texturing properties. In Asia, borax (Chinese: 硼砂; pinyin: péng shā or Chinese: 月石; pinyin: yuè shí) was found to have been added to some Chinese foods like hand-pulled noodles lamian and some rice noodles like shahe fen, kway teow, and chee cheong fun recipes.[21] In Indonesia it is a common, but forbidden, additive to such foods as noodles, bakso (meatballs), and steamed rice. The country's Directorate of Consumer Protection warns of the risk of liver cancer with high consumption over a period of 5–10 years.[22]

Other uses

Rio Tinto Borax Mine Pit, Boron, California

Toxicity

Borax, sodium tetraborate decahydrate, according to one study, is not acutely toxic.[28] Its LD50 (median lethal dose) score is tested at 2.66 g/kg in rats,[29] meaning that a significant dose of the chemical is needed to cause severe symptoms or death. The lethal dose is not necessarily the same for humans. On pesticide information websites it is listed as a non-lethal compound and of no hazardous concerns.[30]

First registered in 1946 by the EPA as an insecticide with various restrictions, all restrictions were removed in February 1986 due to the low toxicity of borax, as published in two EPA documents relating to boric acid and borax.[31][32]

EPA has determined that, because they are of low toxicity and occur naturally, boric acid and its sodium salts should be exempted from the requirement of a tolerance (maximum residue limit) for all raw agricultural commodities.[31]

Although it cited inconclusive data, a re-evaluation in 2006 by the EPA still found that "There were no signs of toxicity observed during the study and no evidence of cytotoxicity to the target organ."[33] In the reevaluation, a study of toxicity due to overexposure was checked and the findings were that "The residential handler inhalation risks due to boric acid and its sodium salts as active ingredients are not a risk concern and do not exceed the level of concern..." but that there could be some risk of irritation to children inhaling it if used as a powder for cleaning rugs.

Sodium tetraborate decahydrate has no known hazard issues.[34][clarification needed]

Conditions defined as "over-exposure" to borax dust can cause respiratory irritation, while no skin irritation is known to exist due to borax. Ingestion may cause gastrointestinal distress including nausea, persistent vomiting, abdominal pain, and diarrhea. Effects on the vascular system and brain include headaches and lethargy, but are less frequent. "In severe poisonings, a beefy red skin rash affecting palms, soles, buttocks and scrotum has been described. With severe poisoning, erythematous and exfoliative rash, unconsciousness, respiratory depression, and renal failure."[28]

A draft risk assessment released by Health Canada in July 2016 has found that overexposure to boric acid has the potential to cause developmental and reproductive health effects. Since people are already exposed to boric acid naturally through their diets and water, Health Canada advised that exposure from other sources should be reduced as much as possible, especially for children and pregnant women. The concern is not with any one product, but rather multiple exposures from a variety of sources. With this in mind, the department also announced that registrations for certain pesticides that contain boric acid, which are commonly used in homes, will have their registrations cancelled and be phased out of the marketplace. As well, new, more protective label directions are being introduced for other boric acid pesticides that continue to be registered in Canada (for example, enclosed bait stations and spot treatments using gel formulations).[35]

Possible carcinogen

The Indonesian Directorate of Consumer Protection warns of the risk of liver cancer with high consumption over a period of 5–10 years.[22]

Risk to fertility and pregnancy

Borax was added to the Substance of Very High Concern (SVHC) candidate list on 16 December 2010. The SVHC candidate list is part of the EU Regulations on the Registration, Evaluation, Authorisation and Restriction of Chemicals 2006 (REACH), and the addition was based on the revised classification of borax as toxic for reproduction category 1B under the CLP Regulations. Substances and mixtures imported into the EU which contain borax are now required to be labelled with the warnings "May damage fertility" and "May damage the unborn child".[36] It was proposed for addition to REACH Annex XIV by the ECHA on 1 July 2015.[37] If this recommendation is approved, all imports and uses of borax in the EU will have to be authorized by the ECHA[needs update]. Review of the boron toxicity (as boric acid and borates) published 2012 in Journal of Toxicology and Environmental Health concluded: "It clearly appears that human B [boron] exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions."[38]

See also

<templatestyles src="Div col/styles.css"/>

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. "American Borax Production" Scientific American September 22, 1877
  5. Hildebrand, G. H. (1982) "Borax Pioneer: Francis Marion Smith." San Diego: Howell-North Books. p. 267 ISBN 0-8310-7148-6
  6. Lua error in package.lua at line 80: module 'strict' not found. p. 316.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found. (Subscription or UK public library membership required.)
  9. Lua error in package.lua at line 80: module 'strict' not found. (Subscription or UK public library membership required.)
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Record in the Household Products Database of NLM
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Peacock AC, Dingman CW. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry (1967) volume 6(6):1818-27.
  14. Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Research (1981) Volume 9(13): 3015-3027
  15. Nucleic Acid Electrophoresis, D. Tietz, ed., Springer-Verlag ISBN 3-540-63959-4 (1998)
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. 22.0 22.1 Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Agronomic Library: Boron
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. [1][dead link]
  28. 28.0 28.1 Lua error in package.lua at line 80: module 'strict' not found.
  29. [2][dead link]
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. 31.0 31.1 Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. Member state committee draft support document for identification of disodium tetraborate, anhydrous as a substance of very high concern because of its CMR properties. Adopted on 9 June 2010. Echa.europa.eu. Retrieved on 2012-02-17.
  37. Recommendation of the European Chemicals Agency of 1 July 2015 for the inclusion of substances in Annex XIV to REACH (List of Substances subject to Authorisation) Echa.europa.eu. Retrieved on 2015-07-06.
  38. http://www.tandfonline.com/doi/abs/10.1080/15287394.2012.675301

External links