Cannabicyclohexanol

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Cannabicyclohexanol
Cannabicyclohexanol.svg
Systematic (IUPAC) name
2-[(1S,3R)-3-hydroxycyclohexyl]- 5-(2-methylnonan-2-yl)phenol
Clinical data
Legal status
Identifiers
CAS Number 70434-92-3 YesY
PubChem CID: 12788230
ChemSpider 26668381 N
UNII ESJ086H0VF YesY
Chemical data
Formula C22H36O2
Molecular mass 332.519 g/mol
  • OC2CC(CCC2)c1ccc(cc1O)C(C)(C)CCCCCCC
  • InChI=1S/C22H36O2/c1-4-5-6-7-8-14-22(2,3)18-12-13-20(21(24)16-18)17-10-9-11-19(23)15-17/h12-13,16-17,19,23-24H,4-11,14-15H2,1-3H3/t17-,19+/m1/s1 N
  • Key:HNMJDLVMIUDJNH-MJGOQNOKSA-N N
 NYesY (what is this?)  (verify)

Cannabicyclohexanol (CCH, CP 47,497 dimethyloctyl homologue, (C8)-CP 47,497) is a cannabinoid receptor agonist drug, developed by Pfizer in 1979. On 19 January 2009, the University of Freiburg in Germany announced that an analog of CP 47,497 was the main active ingredient in the herbal incense product Spice, specifically the 1,1-dimethyloctyl homologue of CP 47,497, which is now known as cannabicyclohexanol.[2][3][4] The 1,1-dimethyloctyl homologue of CP 47,497 is in fact several times more potent than the parent compound,[5] which is somewhat unexpected as the 1,1-dimethylheptyl is the most potent substituent in classical cannabinoid compounds such as HU-210.[6]

Toxicity

(C8)-CP 47,497 has been shown to cause DNA damage and inflammation in directly exposed human cells in vitro,[7] though it is unclear if this has any relevance in vivo.

Enantiomers

Cannabicyclohexanol has four enantiomers, which by analogy with other related cannabinoid compounds can be expected to have widely varying affinity for cannabinoid receptors, and consequently will show considerable variation in potency.[8] While the (-)-cis enantiomer (-)-cannabicyclohexanol discovered in the original Pfizer research is expected to be the most potent, all four enantiomers have been isolated from illicit samples of this compound, and the properties of the other three enantiomers have not been studied in detail. Most commonly cannabicyclohexanol is encountered as a diastereomeric mix of the two cis or two trans isomers in varying ratios, though more rarely a mixture of all four enantiomers has been seen, as well as reasonably enantiopure samples of the most active isomer.[9][10][11] Confusion can arise around the naming of these compounds as they can be viewed either as substituted phenols or substituted cyclohexanols, but this results in different numbering of the rings. Consequently, the active isomer can be named either 2-[(1S,3R)-3-hydroxycyclohexyl]-5-(2-methylnonan-2-yl)phenol or (1R,3S)-3-[2-hydroxy-4-(2-methylnonan-2-yl)phenyl]cyclohexan-1-ol.

The four enantiomers of cannabicyclohexanol

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Eric Stern and Didier Lambert. Cannabinoids in Nature and Medicine. Medicinal Chemistry Endeavors around the Phytocannabinoids. pp 5, 130. ISBN 978-3-906390-56-7
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. report.pdf Europol 2009 Annual Report on the implementation of Council Decision 2005/387/JHA
  11. 2012 Annual Report_final.pdf Europol 2012 Annual Report on the implementation of Council Decision 2005/387/JHA


<templatestyles src="Asbox/styles.css"></templatestyles>