Clostridium

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Clostridium
Clostridium difficile 01.jpg
SE micrograph of Clostridium difficile colonies from a stool sample
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Clostridium

Selected species

Clostridium absonum, Clostridium aceticum, Clostridium acetireducens, Clostridium acetobutylicum, Clostridium acidisoli, Clostridium aciditolerans, Clostridium acidurici, Clostridium aerotolerans, Clostridium aestuarii, Clostridium akagii, Clostridium aldenense, Clostridium aldrichii, Clostridium algidicarni, Clostridium algidixylanolyticum, Clostridium algifaecis, Clostridium algoriphilum, Clostridium alkalicellulosi, Clostridium aminophilum, Clostridium aminovalericum, Clostridium amygdalinum, Clostridium amylolyticum, Clostridium arbusti, Clostridium arcticum, Clostridium argentinense, Clostridium asparagiforme, Clostridium aurantibutyricum, Clostridium baratii, Clostridium barkeri, Clostridium bartlettii, Clostridium beijerinckii, Clostridium bifermentans, Clostridium bolteae, Clostridium bornimense, Clostridium botulinum, Clostridium bowmanii, Clostridium bryantii, Clostridium butyricum, Clostridium cadaveris, Clostridium caenicola, Clostridium caminithermale, Clostridium carboxidivorans, Clostridium carnis, Clostridium cavendishii, Clostridium celatum, Clostridium celerecrescens, Clostridium cellobioparum, Clostridium cellulofermentans, Clostridium cellulolyticum, Clostridium cellulosi, Clostridium cellulovorans, Clostridium chartatabidum, Clostridium chauvoei, Clostridium chromiireducens, Clostridium citroniae, Clostridium clariflavum, Clostridium clostridioforme, Clostridium coccoides, Clostridium cochlearium, Clostridium colletant, Clostridium colicanis, Clostridium colinum, Clostridium collagenovorans, Clostridium cylindrosporum, Clostridium difficile (bacteria), Clostridium diolis, Clostridium disporicum, Clostridium drakei, Clostridium durum, Clostridium estertheticum, Clostridium estertheticum estertheticum, Clostridium estertheticum laramiense, Clostridium fallax, Clostridium felsineum, Clostridium fervidum, Clostridium fimetarium, Clostridium formicaceticum, Clostridium frigidicarnis, Clostridium frigoris, Clostridium ganghwense, Clostridium gasigenes, Clostridium ghonii, Clostridium glycolicum, Clostridium glycyrrhizinilyticum, Clostridium grantii, Clostridium haemolyticum, Clostridium halophilum, Clostridium hastiforme, Clostridium hathewayi, Clostridium herbivorans, Clostridium hiranonis, Clostridium histolyticum, Clostridium homopropionicum, Clostridium huakuii, Clostridium hungatei, Clostridium hydrogeniformans, Clostridium hydroxybenzoicum, Clostridium hylemonae, Clostridium jejuense, Clostridium indolis, Clostridium innocuum, Clostridium intestinale, Clostridium irregulare, Clostridium isatidis, Clostridium josui, Clostridium kluyveri, Clostridium lactatifermentans, Clostridium lacusfryxellense, Clostridium laramiense, Clostridium lavalense, Clostridium lentocellum, Clostridium lentoputrescens, Clostridium leptum, Clostridium limosum, Clostridium litorale, Clostridium lituseburense, Clostridium ljungdahlii, Clostridium lortetii, Clostridium lundense, Clostridium magnum, Clostridium malenominatum, Clostridium mangenotii, Clostridium mayombei, Clostridium methoxybenzovorans, Clostridium methylpentosum, Clostridium neopropionicum, Clostridium nexile, Clostridium nitrophenolicum, Clostridium novyi, Clostridium oceanicum, Clostridium orbiscindens, Clostridium oroticum, Clostridium oxalicum, Clostridium papyrosolvens, Clostridium paradoxum, Clostridium paraperfringens (Alias: C. welchii), Clostridium paraputrificum, Clostridium pascui, Clostridium pasteurianum, Clostridium peptidivorans, Clostridium perenne, Clostridium perfringens, Clostridium pfennigii, Clostridium phytofermentans, Clostridium piliforme, Clostridium polysaccharolyticum, Clostridium populeti, Clostridium propionicum, Clostridium proteoclasticum, Clostridium proteolyticum, Clostridium psychrophilum, Clostridium puniceum, Clostridium purinilyticum, Clostridium putrefaciens, Clostridium putrificum, Clostridium quercicolum, Clostridium quinii, Clostridium ramosum, Clostridium rectum, Clostridium roseum, Clostridium saccharobutylicum, Clostridium saccharogumia, Clostridium saccharolyticum, Clostridium saccharoperbutylacetonicum, Clostridium sardiniense, Clostridium sartagoforme, Clostridium scatologenes, Clostridium schirmacherense, Clostridium scindens, Clostridium septicum, Clostridium sordellii, Clostridium sphenoides, Clostridium spiroforme, Clostridium sporogenes, Clostridium sporosphaeroides, Clostridium stercorarium, Clostridium stercorarium leptospartum, Clostridium stercorarium stercorarium, Clostridium stercorarium thermolacticum, Clostridium sticklandii, Clostridium straminisolvens, Clostridium subterminale, Clostridium sufflavum, Clostridium sulfidigenes, Clostridium symbiosum, Clostridium tagluense, Clostridium tepidiprofundi, Clostridium termitidis, Clostridium tertium, Clostridium tetani, Clostridium tetanomorphum, Clostridium thermaceticum, Clostridium thermautotrophicum, Clostridium thermoalcaliphilum, Clostridium thermobutyricum, Clostridium thermocellum, Clostridium thermocopriae, Clostridium thermohydrosulfuricum, Clostridium thermolacticum, Clostridium thermopalmarium, Clostridium thermopapyrolyticum, Clostridium thermosaccharolyticum, Clostridium thermosuccinogenes, Clostridium thermosulfurigenes, Clostridium thiosulfatireducens, Clostridium tyrobutyricum, Clostridium uliginosum, Clostridium ultunense, Clostridium villosum, Clostridium vincentii, Clostridium viride, Clostridium xylanolyticum, Clostridium xylanovorans

Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).

Clostridium is a genus of Gram-positive bacteria, which includes several significant human pathogens, most notably the causative agent of botulism. They are obligate anaerobes capable of producing endospores. The normal, reproducing cells of Clostridium, called the vegetative form, are rod-shaped, which gives them their name, from the Greek κλωστήρ or spindle. Clostridium endospores have a distinct bowling pin or bottle shape, distinguishing them from other bacterial endospores, which are usually ovoid in shape. Clostridium species inhabit soils and the intestinal tract of animals, including humans.[1]

Overview

Clostridium contains around 100 species that include common free-living bacteria, as well as important pathogens.[2] The main species responsible for disease in humans are:[3]

Bacillus and Clostridium are often described as gram-variable, because they show an increasing number of gram-negative cells as the culture ages.[6]

Microbiologists distinguish Clostridium from Bacillus by the following features:[1]

  • Clostridium grows in anaerobic conditions, and Bacillus grows in aerobic conditions;
  • Clostridium forms bottle-shaped endospores, and Bacillus forms oblong endospores;
  • Clostridium does not form the enzyme catalase, while Bacillus secretes catalase to destroy toxic byproducts of oxygen metabolism.
  • Clostridium can be further distinguished from another bottle-shaped endospore producer, Desulfotomaculum, on the basis of the nutrients each genus uses (the latter requires sulfur).

Glycolysis and fermentation of pyruvic acid by Clostridia yield the end products butyric acid, butanol, acetone, isopropanol, and carbon dioxide.[6]

The Schaeffer-Fulton stain (0.5% malachite green in water) can be used to distinguish endospores of Bacillus and Clostridium from other microorganisms.[7] There is a commercially available polymerase chain reaction (PCR) test kit (Bactotype) for the detection of C. perfringens and other pathogenic bacteria.[8]

Treatment

In general, the treatment of clostridial infection is high-dose penicillin G, to which the organism has remained susceptible.[9] Clostridium welchii and Clostridium tetani respond to sulfonamides.[10]

The vegetative cells of Clostridia are heat-labile and are killed by short heating at temperatures above 72-75 ℃. The thermal destruction of Clostridium spores requires higher temperatures (above 121.1 ℃, for example in an autoclave) and longer cooking times (20 min, with a few exceptional cases of > 50 min recorded in the literature). Clostridia and Bacilli are quite radiation-resistant, which is a serious obstacle to the development of shelf-stable irradiated foods for general use in the retail market.[11] The addition of lysozyme, nitrate, nitrite and propionic acid salts inhibits Clostridia in various foods.[12][13][14]

Fructooligosaccharides (fructans) such as inulin, occuring in relatively large amounts in a number of foods such as chicory, garlic, onion, leek, artichoke, and asparagus, have a prebiotic or bifidogenic effect, selectively promoting the growth and metabolism of beneficial bacteria in the colon, such as bifidobacteria and lactobacilli, while inhibiting harmful ones, such as clostridia, fusobacteria, and bacteroides.[15]

History

In the late 1700s, Germany experienced a number of outbreaks of an illness that seemed connected to eating certain sausages. In 1817, the German neurologist Justinus Kerner detected rod-shaped cells in his investigations into this so-called sausage poisoning. In 1897, the Belgian biology professor Emile van Ermengem published his finding of an endospore-forming organism he isolated from spoiled ham. Biologists classified van Ermengem's discovery along with other known gram-positive spore formers in the genus Bacillus. This classification presented problems, however, because the isolate grew only in anaerobic conditions, but Bacillus grew well in oxygen.[1]

In 1924, Ida A. Bengtson separated van Ermengem's microorganisms from the Bacillus group and assigned them to a new genus, Clostridium. By Bengtson's classification scheme, Clostridium contained all of the anaerobic endospore-forming rod-shaped bacteria, except the genus Desulfotomaculum.[1]

Use

References

  1. 1.0 1.1 1.2 1.3 1.4 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Miyake S, Kim S, Suda W, Oshima K, Nakamura M, Matsuoka T, et al. (2015) Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS ONE 10(9): e0137429. doi:10.1371/journal.pone.0137429
  6. 6.0 6.1 6.2 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Velickovic M, Benabou R, Brin MF. Cervical dystonia pathophysiology and treatment options" Drugs 2001;61:1921–1943.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.

External links