Ethylenediamine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Ethylenediamine
Skeletal formula of ethylenediamine
Ball and stick model of ethylenediamine
Space-filling model of ethylenediamine
Sample of ethylenediamine in a jar
Names
Preferred IUPAC name
Ethane-1,2-diamine
Systematic IUPAC name
Ethane-1,2-diamine[2]
Other names
Edamine[1]1,2-Diaminoethane,
Identifiers
107-15-3 YesY
Abbreviations en
605263
ChEBI CHEBI:30347 YesY
ChEMBL ChEMBL816 YesY
ChemSpider 13835550 YesY
EC Number 203-468-6
1098
Jmol 3D model Interactive image
KEGG D01114 YesY
MeSH ethylenediamine
PubChem 3301
RTECS number KH8575000
UNII 60V9STC53F YesY
UN number 1604
  • InChI=1S/C2H8N2/c3-1-2-4/h1-4H2 YesY
    Key: PIICEJLVQHRZGT-UHFFFAOYSA-N YesY
  • NCCN
Properties
C2H8N2
Molar mass 60.10 g·mol−1
Appearance Colorless liquid[3]
Odor Ammoniacal[3]
Density 0.90 g/cm3[3]
Melting point 8 °C (46 °F; 281 K)[3]
Boiling point 116 °C (241 °F; 389 K)[3]
miscible
log P −2.057
Vapor pressure 1.3 kPa (at 20 °C)
5.8 mol Pa−1 kg−1
1.4565
Thermochemistry
172.59 J K−1 mol−1
202.42 J K−1 mol−1
−63.55–−62.47 kJ mol−1
−1.8678–−1.8668 MJ mol−1
Vapor pressure {{{value}}}
Related compounds
Related alkanamines
1,2-Diaminopropane, 1,3-Diaminopropane
Related compounds
ethylamine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a strongly basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998.[4] Ethylenediamine readily reacts with moisture in humid air to produce a corrosive, toxic and irritating mist, to which even short exposures can cause serious damage to health (see safety).

Synthesis

Ethylenediamine is manufactured industrially from 1,2-dichloroethane and ammonia under pressure at 180 °C in an aqueous medium:[4][5]

Ethylendiamin Darstellung.svg

In this reaction hydrogen chloride is generated, which forms a salt with the amine. The amine is liberated by addition of sodium hydroxide and can then be recovered by rectification. Diethylenetriamine (DETA) and triethylenetetramine (TETA) are formed as by-products.

Another industrial route to ethylenediamine involves the reaction of ethanolamine and ammonia:[6]

EDA synthesis from MEOA.svg

This process involves passing the gaseous reactants over a bed of nickel heterogeneous catalysts.

Applications

Ethylenediamine is used in large quantities for production of many industrial chemicals. It forms derivatives with carboxylic acids (including fatty acids), nitriles, alcohols (at elevated temperatures), alkylating agents, carbon disulfide, and aldehydes and ketones. Because of its bifunctional nature, having two amines, it readily forms heterocycles such as imidazolidines.

Precursor to chelation agents, drugs, and agrochemicals

A most prominent derivative of ethylenediamine is the chelating agent EDTA, which is derived from ethylenediamine via a Strecker synthesis involving cyanide and formaldehyde. Hydroxyethylethylenediamine is another commercially significant chelating agent.[4] Numerous bio-active compounds and drugs contain the N-CH2-CH2-N linkage, including some antihistamines.[7] Salts of ethylenebisdithiocarbamate are commercially significant fungicides under the brand names Maneb, Mancozeb, Zineb, and Metiram. Some imidazoline-containing fungicides are derived from ethylenediamine.[4]

Pharmaceutical ingredient

Ethylenediamine is an ingredient in the common bronchodilator drug aminophylline, where it serves to solubilize the active ingredient theophylline. Ethylenediamine has also been used in dermatologic preparations, but has been removed from some because of causing contact dermatitis.[8] When used as a pharmaceutical excipient, after oral administration its bioavailability is about 0.34, due to a substantial first-pass effect. Less than 20% is eliminated by urinal excretion.[9]

Role in polymers

Ethylenediamine, because it contains two amine groups, is a widely used precursor to various polymers. Condensates derived from formaldehyde are plasticizers. It is widely used in the production of polyurethane fibers. The PAMAM class of dendrimers are derived from ethylenediamine.[4]

Tetraacetylethylenediamine

The bleaching activator tetraacetylethylenediamine is generated from ethylenediamine. The derivative N,N-ethylenebis(stearamide) (EBS) is a commercially significant mold-release agent and a surfactant in gasoline and motor oil.

Other applications

Polyamines derived from or related to ethylenamine

Ethylenediamine is the first member of the so-called polyethylene amines, other members being:

  • Diethylenetriamine, abbreviated dien or DETA, (H2N-CH2CH2-NH-CH2CH2-NH2, an analog of diethylene glycol)
  • Triethylenetetramine, abbreviated trien or TETA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2)
  • Tetraethylenepentamine, abbreviated TEPA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2),
  • Pentaethylenehexamine, abbreviated PEHA, (H2N-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH-CH2CH2-NH2), up to polyethylene amine. Similarly piperazine is an analogue of dioxane.

Related derivatives of ethylenediamine include tetramethylethylenediamine (abbreviated TMEDA), (CH3)2N-CH2CH2-N(CH3)2 and tetraethylethylenediamine (abbreviated TEEDA) (C2H5)2N-CH2CH2-N(C2H5)2.

Chiral analogues of ethylenediamine include 1,2-diaminopropane and trans-diaminocyclohexane.

Coordination chemistry

Ethylenediamine is a well-known chelating ligand for coordination compounds. It is often abbreviated "en" in inorganic chemistry. The complex [Co(ethylenediamine)3]3+ is an archetypical chiral tris-chelate complex. The salen ligands, some of which are used in catalysis, are derived from the condensation of salicylaldehydes and ethylenediamine.

Safety

Ethylenediamine, like ammonia and other low-molecular weight amines, is a skin and respiratory irritant. Unless tightly contained, liquid ethylenediamine will release toxic and irritating vapors into its surroundings, especially on heating. The vapors react with moisture in humid air to form a characteristic white mist, which is extremely irritating to skin, eyes, lungs and mucus membranes. Exposure to a relatively small amount of vapor or mist by inhalation can seriously damage health and may even result in death.[10] Ethylenediamine has a half-life of about 30 minutes in a small volume of distribution of 0.133 liters/kg.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 3.3 3.4 Record in the GESTIS Substance Database of the IFA
  4. 4.0 4.1 4.2 4.3 4.4 Karsten Eller, Erhard Henkes, Roland Rossbacher, Hartmut Höke "Amines, Aliphatic" in Ullmann's Encyclopedia of Industrial Chemistry, 2005 Wiley-VCH Verlag, Weinheim. doi:10.1002/14356007.a02_001
  5. Hans-Jürgen Arpe, Industrielle Organische Chemie, 6. Auflage (2007), Seite 245, Wiley VCH
  6. Hans-Jürgen Arpe, Industrielle Organische Chemie, 6. Auflage (2007), Seite 275, Wiley VCH
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Material Safety Data Sheet

External links