History of robots

From Infogalactic: the planetary knowledge core
(Redirected from History of robotics)
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found. The history of robots has its origins on the ancient world. The modern concept began to be developed with the onset of the Industrial Revolution which allowed for the use of complex mechanics and the subsequent introduction of electricity. This made it possible to power machines with small compact motors. In the early 20th century, the notion of a humanoid machine was developed. Today, it is now possible to envisage human sized robots with the capacity for near human thoughts and movement.

The first uses of modern robots were in factories as industrial robots – simple fixed machines capable of manufacturing tasks which allowed production without the need for human assistance. Digitally controlled industrial robots and robots making use of artificial intelligence have been built since the 1960s.

Early legends

Hephaestus, Greek god of craftsmen.

Concepts of artificial servants and companions date at least as far back as the ancient legends of Cadmus, who sowed dragon teeth that turned into soldiers, and the myth of Pygmalion whose statue of Galatea came to life. Many ancient mythologies included artificial people, such as the talking mechanical handmaidens built by the Greek god Hephaestus (Vulcan to the Romans) out of gold,[1] the clay golems of Jewish legend and clay giants of Norse legend. Chinese legend relates that in the 10th century BC, Yan Shi made an automaton resembling a human in an account from the Lie Zi text.

In Greek mythology, Hephaestus created utilitarian three-legged tables that could move about under their own power and a bronze man, Talos, that defended Crete. Talos was eventually destroyed by Media who cast a lightning bolt at his single vein of lead. To take the golden fleece Jason was also required to tame two fire breathing bulls with bronze hooves; and like Cadmus he sowed the teeth of a dragon into soldiers.[2]

The Indian Lokapannatti (11th/12th century[3]) tells the story of King Ajatashatru of Magadha who gathered the Buddhas relics and hid them in an underground stupa.[4] The Buddhas relics were protected by mechanical robots (bhuta vahana yanta), from the kingdom of Roma visaya; until they were disarmed by King Ashoka.[3][5] In the Egyptian legend of Rocail, the younger brother of Seth created a palace and a sepulcher containing autonomous statues that lived out the lives of men so realistically they were mistaken for having souls.[2]

In Christian legend, several of the men associated with the introduction of Arabic learning (and, through it, the reintroduction of Aristotle and Hero's works) to medieval Europe devised brazen heads that could answer questions posed to them. Albertus Magnus was supposed to have constructed an entire android who could perform some domestic tasks but was destroyed by Albert's student Thomas Aquinas for disturbing his thought.[2] The most famous legend concerned a bronze head devised by Roger Bacon which was destroyed or scrapped after he missed its moment of operation.[2]

Automata were popular in the imaginary worlds of medieval literature. For instance, the Middle Dutch tale Roman van Walewein ("The Romance of Walewein", early 13th century) described mechanical birds and angels producing sound by means of systems of pipes.[6][7]

Early beginnings

The water-powered mechanism of Su Song's astronomical clock tower, featuring a clepsydra tank, waterwheel, escapement mechanism, and chain drive to power an armillary sphere and 113 striking clock jacks to sound the hours and to display informative plaques.

Concepts akin to a robot can be found as long ago as the 4th century BC, when the Greek mathematician Archytas of Tarentum postulated a mechanical bird he called "The Pigeon" which was propelled by steam. Yet another early automaton was the clepsydra, made in 250 BC by Ctesibius of Alexandria, a physicist and inventor from Ptolemaic Egypt.[8] Hero of Alexandria (10–70 AD) made numerous innovations in the field of automata, including one that allegedly could speak.

Taking up the earlier reference in Homer's Iliad, Aristotle speculated in his Politics (ca. 322 BC, book 1, part 4) that automatons could someday bring about human equality by making possible the abolition of slavery:

There is only one condition in which we can imagine managers not needing subordinates, and masters not needing slaves. This condition would be that each instrument could do its own work, at the word of command or by intelligent anticipation, like the statues of Daedalus or the tripods made by Hephaestus, of which Homer relates that "Of their own motion they entered the conclave of Gods on Olympus", as if a shuttle should weave of itself, and a plectrum should do its own harp playing.

In ancient China, an account on automata is found in the Lie Zi text, written in the 3rd century BC, in which King Mu of Zhou (1023–957 BC) is presented with a life-size, human-shaped mechanical figure by Yan Shi, an "artificer".[9]

The Cosmic Engine, a 10-metre (33 ft) clock tower built by Su Song in Kaifeng, China, in 1088, featured mechanical mannequins that chimed the hours, ringing gongs or bells among other devices.[10][11]

File:Al-jazari robots.jpg
Al-Jazari's programmable humanoid robots.

Al-Jazari (1136–1206), a Muslim inventor during the Artuqid dynasty, designed and constructed a number of automatic machines, including kitchen appliances, musical automata powered by water, and the first programmable humanoid robot in 1206. Al-Jazari's robot was a boat with four automatic musicians that floated on a lake to entertain guests at royal drinking parties. His mechanism had a programmable drum machine with pegs (cams) that bump into little levers that operate the percussion. The drummer could be made to play different rhythms and different drum patterns by moving the pegs to different locations.[12]

Tea-serving karakuri, with mechanism, 19th century. Tokyo National Science Museum.

Hero's works on automata were translated into Latin amid the 12th century Renaissance. The early 13th-century artist-engineer Villard de Honnecourt sketched plans for several automata. At the end of the thirteenth century, Robert II, Count of Artois, built a pleasure garden at his castle at Hesdin that incorporated a number of robots, humanoid and animal.[13] [14] [15]

One of the first recorded designs of a humanoid robot was made by Leonardo da Vinci (1452–1519) in around 1495. Da Vinci's notebooks, rediscovered in the 1950s, contain detailed drawings of a mechanical knight in armour which was able to sit up, wave its arms and move its head and jaw.[16] The design is likely to be based on his anatomical research recorded in the Vitruvian Man but it is not known whether he attempted to build the robot (see: Leonardo's robot). In 1533, Johannes Müller von Königsberg created an automaton eagle and fly made of iron; both could fly.[17] John Dee is also known for creating a wooden beetle, capable of flying.[17]

Around 1700, many automatons were built including ones capable of acting, drawing, flying, and playing music;[17] some of the most famous works of the period were created by Jacques de Vaucanson in 1737, including an automaton flute player, tambourine player, and his most famous work, "The Digesting Duck". Vaucanson's duck was powered by weights and was capable of imitating a real duck by flapping its wings (over 400 parts were in each of the wings alone), eat grain, digest it, and defecate by excreting matter stored in a hidden compartment.[18]

The Japanese craftsman Hisashige Tanaka, known as "Japan's Edison", created an array of extremely complex mechanical toys, some of which were capable of serving tea, firing arrows drawn from a quiver, or even painting a Japanese kanji character. The landmark text Karakuri Zui (Illustrated Machinery) was published in 1796.[19]

Remote-controlled systems

The Brennan torpedo, one of the earliest "guided missiles".

Remotely operated vehicles were demonstrated in the late 19th century in the form of several types of remotely controlled torpedos. The early 1870s saw remotely controlled torpedos by John Ericsson (pneumatic), John Louis Lay (electric wire guided), and Victor von Scheliha (electric wire guided).[20]

The Brennan torpedo, invented by Louis Brennan in 1877 was powered by two contra-rotating propellors that were spun by rapidly pulling out wires from drums wound inside the torpedo. Differential speed on the wires connected to the shore station allowed the torpedo to be guided to its target, making it "the world's first practical guided missile".[21] In 1898 Nikola Tesla publicly demonstrated a "wireless" radio-controlled torpedo that he hoped to sell to the U.S. Navy.[22][23]

Archibald Low was known as the "father of radio guidance systems" for his pioneering work on guided rockets and planes during the First World War. In 1917, he demonstrated a remote controlled aircraft to the Royal Flying Corps and in the same year built the first wire-guided rocket.

Humanoid robots

The term "robot[24]" was first used to denote fictional automata in the 1921 play R.U.R. (Rossum's Universal Robots) by the Czech writer, Karel Čapek. According to Čapek, the word was created by his brother Josef from the Czech "robota", meaning servitude.[25] The play, R.U.R, replaced the popular use of the word "automaton" with the word "robot."[26] In 1927, Fritz Lang's Metropolis was released; the Maschinenmensch ("machine-human"), a gynoid humanoid robot, also called "Parody", "Futura", "Robotrix", or the "Maria impersonator" (played by German actress Brigitte Helm), was the first robot ever to be depicted on film.[27] In many films, radio and television programs of the 1950s and before, the word “robot” was usually pronounced “robit,” even though it was spelled “bot” and not “bit.” Examples include “The Lonely” episode of the TV series “The Twilight Zone,” first aired on November 15, 1959, and all episodes of the sci-fi radio program “X Minus One.”

Many robots were constructed before the dawn of computer-controlled servomechanisms, for the public relations purposes of major firms. These were essentially machines that could perform a few stunts, like the automatons of the 18th century. In 1928, one of the first humanoid robots was exhibited at the annual exhibition of the Model Engineers Society in London. Invented by W. H. Richards, the robot Eric's frame consisted of an aluminium body of armour with eleven electromagnets and one motor powered by a twelve-volt power source. The robot could move its hands and head and could be controlled through remote control or voice control.[28]

The first humanoid robot was a soldier with a trumpet, made in 1810 by Friedrich Kauffman in Dresden, Germany. The robot was on display until at least April 30, 1950.

Westinghouse Electric Corporation built Televox in 1926 – it was a cardboard cutout connected to various devices which users could turn on and off. In 1939, the humanoid robot known as Elektro was debuted at the World's Fair.[29][30] Seven feet tall (2.1 m) and weighing 265 pounds (120.2 kg), it could walk by voice command, speak about 700 words (using a 78-rpm record player), smoke cigarettes, blow up balloons, and move its head and arms. The body consisted of a steel gear cam and motor skeleton covered by an aluminum skin. In 1928, Japan's first robot, Gakutensoku, was designed and constructed by biologist Makoto Nishimura.[31]

Modern autonomous robots

In 1941 and 1942, Isaac Asimov formulated the Three Laws of Robotics, and in the process of doing so, coined the word "robotics". In 1948, Norbert Wiener formulated the principles of cybernetics, the basis of practical robotics.

The first electronic autonomous robots with complex behaviour were created by William Grey Walter of the Burden Neurological Institute at Bristol, England in 1948 and 1949. He wanted to prove that rich connections between a small number of brain cells could give rise to very complex behaviors - essentially that the secret of how the brain worked lay in how it was wired up. His first robots, named Elmer and Elsie, were constructed between 1948 and 1949 and were often described as tortoises due to their shape and slow rate of movement. The three-wheeled tortoise robots were capable of phototaxis, by which they could find their way to a recharging station when they ran low on battery power.

Walter stressed the importance of using purely analogue electronics to simulate brain processes at a time when his contemporaries such as Alan Turing and John von Neumann were all turning towards a view of mental processes in terms of digital computation. His work inspired subsequent generations of robotics researchers such as Rodney Brooks, Hans Moravec and Mark Tilden. Modern incarnations of Walter's turtles may be found in the form of BEAM robotics.[32]

The Turing test was proposed by British mathematician Alan Turing in his 1950 paper Computing Machinery and Intelligence, which opens with the words: "I propose to consider the question, 'Can machines think?'" The term 'Artificial Intelligence' was created at a conference held at Dartmouth College in 1956.[33] Allen Newell, J. C. Shaw, and Herbert A. Simon pioneered the newly created artificial intelligence field with the Logic Theory Machine (1956), and the General Problem Solver in 1957.[34] In 1958, John McCarthy and Marvin Minsky started the MIT Artificial Intelligence lab with $50,000.[35] John McCarthy also created LISP in the summer of 1958, a programming language still important in artificial intelligence research.[36]

File:Original Robot Patent.jpg
U.S. Patent 2,988,237, issued in 1961 to Devol.

The first digitally operated and programmable robot was invented by George Devol in 1954 and was ultimately called the Unimate. This ultimately laid the foundations of the modern robotics industry.[37] Devol sold the first Unimate to General Motors in 1960, and it was installed in 1961 in a plant in Trenton, New Jersey to lift hot pieces of metal from a die casting machine and stack them.[38] Devol’s patent for the first digitally operated programmable robotic arm represents the foundation of the modern robotics industry.[39]

The Rancho Arm was developed as a robotic arm to help handicapped patients at the Rancho Los Amigos Hospital in Downey, California; this computer controlled arm was bought by Stanford University in 1963.[40] IBM announced its IBM System/360 in 1964. The system was heralded as being more powerful, faster, and more capable than its predecessors.[41]

The film 2001: A Space Odyssey was released in 1968; the movie prominently features HAL 9000, a malevolent artificial intelligence unit which controls a spacecraft.[42] Marvin Minsky created the Tentacle Arm in 1968; the arm was computer controlled and its 12 joints were powered by hydraulics.[40] Mechanical Engineering student Victor Scheinman created the Stanford Arm in 1969; the Stanford Arm is recognized as the first electronic computer controlled robotic arm (Unimate's instructions were stored on a magnetic drum).[40] The first mobile robot capable of reasoning about its surroundings, Shakey was built in 1970 by the Stanford Research Institute (now SRI International). Shakey combined multiple sensor inputs, including TV cameras, laser rangefinders, and "bump sensors" to navigate.[40] In the winter of 1970, the Soviet Union explored the surface of the moon with the lunar vehicle Lunokhod 1, the first roving remote-controlled robot to land on another world.

1970s

File:Freddy-Robot.jpg
The Freddy II Robot, built in 1973-6.

Artificial intelligence critic Hubert Dreyfuss published his influential book What Computers Cannot Do in 1972.[43] Freddy and Freddy II, both built in the United Kingdom, were robots capable of assembling wooden blocks in a period of several hours.[44] German based company KUKA built the world's first industrial robot with six electromechanically driven axes, known as FAMULUS.[45] In 1974, David Silver designed The Silver Arm; the Silver Arm was capable of fine movements replicating human hands. Feedback was provided by touch and pressure sensors and analyzed by a computer.[40] Marvin Minsky published his landmark paper "A Framework for Representing Knowledge" on artificial intelligence.[46]

Joseph Weizenbaum (creator of ELIZA, a program capable of simulating a Rogerian psychotherapist) published Computer Power and Human Reason, presenting an argument against the creation of artificial intelligence.[47] The SCARA, Selective Compliance Assembly Robot Arm, was created in 1978 as an efficient, 4-axis robotic arm. Best used for picking up parts and placing them in another location, the SCARA was introduced to assembly lines in 1981.[48] XCON, an expert system designed to customize orders for industrial use, was released in 1979.[49] The Stanford Cart successfully crossed a room full of chairs in 1979. The Stanford Cart relied primarily on stereo vision to navigate and determine distances.[40] The Robotics Institute at Carnegie Mellon University was founded in 1979 by Raj Reddy.[50]

1980s

KUKA IR 160/60 Robots from 1983

Takeo Kanade created the first "direct drive arm" in 1981. The first of its kind, the arm's motors were contained within the robot itself, eliminating long transmissions.[51] Cyc, a project to create a database of common sense for artificial intelligence, was started in 1984 by Douglas Leant. The program attempts to deal with ambiguity in language, and is still underway.[52] The first program to publish a book, the expert system Racter, programmed by William Chamberlain and Thomas Etter, wrote the book "The Policeman's Beard is Half-Constructed" in 1983. It is now thought that a system of complex templates were used.[53]

In 1984 Wabot-2 was revealed; capable of playing the organ, Wabot-2 had 10 fingers and two feet. Wabot-2 was able to read a score of music and accompany a person.[54] Chess playing programs HiTech and Deep Thought defeated chess masters in 1989. Both were developed by Carnegie Mellon University; Deep Thought development paved the way for the Deep Blue.[55]

In 1986, Honda began its humanoid research and development program to create robots capable of interacting successfully with humans.[56] A hexapodal robot named Genghis was revealed by MIT in 1989. Genghis was famous for being made quickly and cheaply due to construction methods; Genghis used 4 microprocessors, 22 sensors, and 12 servo motors.[57] Rodney Brooks and Anita M. Flynn published "Fast, Cheap, and Out of Control: A Robot Invasion of The Solar System". The paper advocated creating smaller cheaper robots in greater numbers to increase production time and decrease the difficulty of launching robots into space.[58]

1990s

The biomimetic robot RoboTuna was built by doctoral student David Barrett at the Massachusetts Institute of Technology in 1996 to study how fish swim in water. RoboTuna is designed to swim and resemble a blue fin tuna.[59] Invented by Dr. John Adler, in 1994, the Cyberknife (a stereotactic radiosurgery performing robot) offered an alternative treatment of tumors with a comparable accuracy to surgery performed by human doctors.[60]

IBM's Deep Blue computer, defeated World Chess Champion Garry Kasparov in 1997.

Honda's P2 humanoid robot was first shown in 1996. Standing for "Prototype Model 2", P2 was an integral part of Honda's humanoid development project; over 6 feet tall, P2 was smaller than its predecessors and appeared to be more human-like in its motions.[61] Expected to only operate for seven days, the Sojourner rover finally shuts down after 83 days of operation in 1997. This small robot (only weighing 23 lbs) performed semi-autonomous operations on the surface of Mars as part of the Mars Pathfinder mission; equipped with an obstacle avoidance program, Sojourner was capable of planning and navigating routes to study the surface of the planet. Sojourner's ability to navigate with little data about its environment and nearby surroundings allowed the robot to react to unplanned events and objects.[62] Also in 1997, IBM's chess playing program Deep Blue beat the then current World Chess Champion Garry Kasparov playing at the "Grandmaster" level. The super computer was a specialized version of a framework produced by IBM, and was capable of processing twice as many moves per second as it had during the first match (which Deep Blue had lost), reportedly 200,000,000 moves per second. The event was broadcast live over the internet and received over 74 million hits.[63]

The P3 humanoid robot was revealed by Honda in 1998 as a part of the company's continuing humanoid project.[64] In 1999, Sony introduced the AIBO, a robotic dog capable of interacting with humans, the first models released in Japan sold out in 20 minutes.[65] Honda revealed the most advanced result of their humanoid project in 2000, named ASIMO. ASIMO is capable of running, walking, communication with humans, facial and environmental recognition, voice and posture recognition, and interacting with its environment.[66] Sony also revealed its Sony Dream Robots, small humanoid robots in development for entertainment.[67] In October 2000, the United Nations estimated that there were 742,500 industrial robots in the world, with more than half of the robots being used in Japan.[17]

2001-

File:Roomba3g.jpg
Roomba vacuum cleaner docked in base station.

In April 2001, the Canadarm2 was launched an orbit and attached to the International Space Station. The Canadarm2 is a larger, more capable version of the arm used by the Space Shuttle and is hailed as being "smarter."[68] Also in April, the Unmanned Aerial Vehicle Global Hawk made the first autonomous non-stop flight over the Pacific Ocean from Edwards Air Force Base in California to RAAF Base Edinburgh in Southern Australia. The flight was made in 22 hours.[69] The popular Roomba, a robotic vacuum cleaner, was first released in 2002 by the company iRobot.[70]

In 2004, Cornell University revealed a robot capable of self-replication; a set of cubes capable of attaching and detaching, the first robot capable of building copies of itself.[71] On 3 and 24 January the Mars rovers Spirit and Opportunity land on the surface of Mars. Launched in 2003, the two robots will drive many times the distance originally expected, and Opportunity is still operating as of mid 2012.[72]

Self-driving cars had made their appearance by the middle of the first decade of the 21st century, but there was room for improvement. All 15 teams competing in the 2004 DARPA Grand Challenge failed to complete the course, with no robot successfully navigating more than five percent of the 150 mile off road course, leaving the $1 million prize unclaimed.[73] In 2005, Honda revealed a new version of its ASIMO robot, updated with new behaviors and capabilities.[74] In 2006, Cornell University revealed its "Starfish" robot, a 4-legged robot capable of self modeling and learning to walk after having been damaged.[75] In 2007, TOMY launched the entertainment robot, i-sobot, which is a humanoid bipedal robot that can walk like a human beings and performs kicks and punches and also some entertaining tricks and special actions under "Special Action Mode".

Robonaut 2, the latest generation of the astronaut helpers, launched to the space station aboard Space Shuttle Discovery on the STS-133 mission. It is the first humanoid robot in space, and although its primary job for now is teaching engineers how dexterous robots behave in space, the hope is that through upgrades and advancements, it could one day venture outside the station to help spacewalkers make repairs or additions to the station or perform scientific work.[76]

Commercial and industrial robots are now in widespread use performing jobs more cheaply or with greater accuracy and reliability than humans. They are also employed for jobs which are too dirty, dangerous or dull to be suitable for humans. Robots are widely used in manufacturing, assembly and packing, transport, earth and space exploration, surgery, weaponry, laboratory research, and mass production of consumer and industrial goods.[77]

With recent advances in computer hardware and data management software, artificial representations of humans are also becoming widely spread. Examples include OpenMRS[78] and EMRBots.[79]

See also

Notes

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 2.2 2.3 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Strong 2007, p. 133-134.
  4. Strong 2007, p. 143.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Haug, "Walewein as a postclassical literary experiment", pp. 23–4; Roman van Walewein, ed. G.A. van Es, De Jeeste van Walewein en het Schaakbord van Penninc en Pieter Vostaert (Zwolle, 1957): 877 ff and 3526 ff.
  7. See also P. Sullivan, "Medieval Automata: The 'Chambre de beautés' in Benoît's Roman de Troie." Romance Studies 6 (1985): 1–20.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. http://ir.uiowa.edu/cgi/viewcontent.cgi?article=1850&context=mff
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. A Brief History of Robotics, MegaGiant Robotics, 2005.
  17. 17.0 17.1 17.2 17.3 Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Edwyn Gray, Nineteenth-century torpedoes and their inventors, page 18
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. US 613809 
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.[dead link]
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.
  40. 40.0 40.1 40.2 40.3 40.4 40.5 Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.
  45. Lua error in package.lua at line 80: module 'strict' not found.
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.
  48. Lua error in package.lua at line 80: module 'strict' not found.
  49. Lua error in package.lua at line 80: module 'strict' not found.
  50. Lua error in package.lua at line 80: module 'strict' not found.
  51. Lua error in package.lua at line 80: module 'strict' not found.
  52. Lua error in package.lua at line 80: module 'strict' not found.
  53. Lua error in package.lua at line 80: module 'strict' not found.
  54. Lua error in package.lua at line 80: module 'strict' not found.
  55. Lua error in package.lua at line 80: module 'strict' not found.
  56. Lua error in package.lua at line 80: module 'strict' not found.
  57. Lua error in package.lua at line 80: module 'strict' not found.
  58. Lua error in package.lua at line 80: module 'strict' not found.
  59. Lua error in package.lua at line 80: module 'strict' not found.
  60. Lua error in package.lua at line 80: module 'strict' not found.
  61. Lua error in package.lua at line 80: module 'strict' not found.
  62. Lua error in package.lua at line 80: module 'strict' not found.
  63. Lua error in package.lua at line 80: module 'strict' not found.
  64. Lua error in package.lua at line 80: module 'strict' not found.
  65. Lua error in package.lua at line 80: module 'strict' not found.
  66. Lua error in package.lua at line 80: module 'strict' not found.
  67. Lua error in package.lua at line 80: module 'strict' not found.
  68. Lua error in package.lua at line 80: module 'strict' not found.
  69. Lua error in package.lua at line 80: module 'strict' not found.
  70. Lua error in package.lua at line 80: module 'strict' not found.[dead link]
  71. Lua error in package.lua at line 80: module 'strict' not found.
  72. Lua error in package.lua at line 80: module 'strict' not found.
  73. Lua error in package.lua at line 80: module 'strict' not found.
  74. Lua error in package.lua at line 80: module 'strict' not found.
  75. Lua error in package.lua at line 80: module 'strict' not found.
  76. Lua error in package.lua at line 80: module 'strict' not found.
  77. Lua error in package.lua at line 80: module 'strict' not found.
  78. Lua error in package.lua at line 80: module 'strict' not found.
  79. Lua error in package.lua at line 80: module 'strict' not found.

References

  • Haug, Walter. "The Roman van Walewein as a postclassical literary experiment." In Originality and Tradition in the Middle Dutch Roman van Walewein, ed. B. Besamusca and E. Kooper. Cambridge, 1999. 17–28.

Further reading