Noncentral beta distribution

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Noncentral Beta
Notation Beta(α, β, λ)
Parameters α > 0 shape (real)
β > 0 shape (real)
λ >= 0 noncentrality (real)
Support x \in [0; 1]\!
PDF (type I) \sum_{j = 0}^{\infty} e^{-\lambda/2} \frac{\left(\frac{\lambda}{2}\right)^j}{j!}\frac{x^{\alpha + j - 1}\left(1-x\right)^{\beta - 1}}{\mathrm{B}\left(\alpha + j,\beta\right)}
CDF (type I) \sum_{j = 0}^{\infty} e^{-\lambda/2} \frac{\left(\frac{\lambda}{2}\right)^j}{j!} I_x \left(\alpha + j,\beta\right)
Mean (type I) e^{-\frac{\lambda}{2}}\frac{\Gamma\left(\alpha + 1\right)}{\Gamma\left(\alpha\right)} \frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha + \beta + 1\right)} {}_2F_2\left(\alpha+\beta,\alpha+1;\alpha,\alpha+\beta+1;\frac{\lambda}{2}\right) (see Confluent hypergeometric function)
Variance (type I) e^{-\frac{\lambda}{2}}\frac{\Gamma\left(\alpha + 2\right)}{\Gamma\left(\alpha\right)} \frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha + \beta + 2\right)} {}_2F_2\left(\alpha+\beta,\alpha+2;\alpha,\alpha+\beta+2;\frac{\lambda}{2}\right) - \mu^2 where \mu is the mean. (see Confluent hypergeometric function)

In probability theory and statistics, the noncentral beta distribution is a continuous probability distribution that is a generalization of the (central) beta distribution.

The noncentral beta distribution (Type I) is the distribution of the ratio


 X = \frac{\chi^2_m(\lambda)}{\chi^2_m(\lambda) + \chi^2_n},

where \chi^2_m(\lambda) is a noncentral chi-squared random variable with degrees of freedom m and noncentrality parameter \lambda, and \chi^2_n is a central chi-squared random variable with degrees of freedom n, independent of \chi^2_m(\lambda).[1] In this case, X \sim \mbox{Beta}\left(\frac{m}{2},\frac{n}{2},\lambda\right)

A Type II noncentral beta distribution is the distribution of the ratio

 Y = \frac{\chi^2_n}{\chi^2_n + \chi^2_m(\lambda)},

where the noncentral chi-squared variable is in the denominator only.[1] If Y follows the type II distribution, then X = 1 - Y follows a type I distribution.

Cumulative distribution function

The Type I cumulative distribution function is usually represented as a Poisson mixture of central beta random variables:[1]


F(x) = \sum_{j=0}^\infty P(j) I_x(\alpha+j,\beta),

where λ is the noncentrality parameter, P(.) is the Poisson(λ/2) probability mass function, \alpha=m/2 and \beta=n/2 are shape parameters, and I_x(a,b) is the incomplete beta function. That is,


F(x) = \sum_{j=0}^\infty \frac{1}{j!}\left(\frac{\lambda}{2}\right)^je^{-\lambda/2}I_x(\alpha+j,\beta).

The Type II cumulative distribution function in mixture form is


F(x) = \sum_{j=0}^\infty P(j) I_x(\alpha,\beta+j).

Algorithms for evaluating the noncentral beta distribution functions are given by Posten[2] and Chattamvelli.[1]

Probability density function

The (Type I) probability density function for the noncentral beta distribution is:


f(x) = \sum_{j=0}^\infin \frac{1}{j!}\left(\frac{\lambda}{2}\right)^je^{-\lambda/2}\frac{x^{\alpha+j-1}(1-x)^{\beta-1}}{B(\alpha+j,\beta)}.

where B is the beta function, \alpha and \beta are the shape parameters, and \lambda is the noncentrality parameter. The density of Y is the same as that of 1-X with the degrees of freedom reversed.[1]

Related distributions

Transformations

If X\sim\mbox{Beta}\left(\alpha,\beta,\lambda\right), then \frac{\beta X}{\alpha (1-X)} follows a noncentral F-distribution with 2\alpha, 2\beta degrees of freedom, and non-centrality parameter \lambda.

If X follows a noncentral F-distribution F_{\mu_{1}, \mu_{2}}\left( \lambda \right) with \mu_{1} numerator degrees of freedom and \mu_{2} denominator degrees of freedom, then  Z = \cfrac{\cfrac{\mu_{2}}{\mu_{1}}}{\cfrac{\mu_{2}}{\mu_{1}} + X^{-1} } follows a noncentral Beta distribution so  Z \sim \mbox{Beta}\left(\frac{1}{2}\mu_{1},\frac{1}{2}\mu_{2},\lambda\right). This is derived from making a straight-forward transformation.

Special cases

When \lambda = 0, the noncentral beta distribution is equivalent to the (central) beta distribution.

Lua error in package.lua at line 80: module 'strict' not found.

References

  1. 1.0 1.1 1.2 1.3 1.4 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  • M. Abramowitz and I. Stegun, editors (1965) "Handbook of Mathematical Functions", Dover: New York, NY.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Christian Walck, "Hand-book on Statistical Distributions for experimentalists."