3 31 honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
331 honeycomb
(no image)
Type Uniform tessellation
Schläfli symbol {3,3,3,33,1}
Coxeter symbol 331
Coxeter-Dynkin diagram CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-face types 321 E7 graph.svg
{36} 7-simplex t0.svg
6-face types 221E6 graph.svg
{35}6-simplex t0.svg
5-face types 211Cross graph 5.svg
{34}5-simplex t0.svg
4-face type {33}4-simplex t0.svg
Cell type {32}3-simplex t0.svg
Face type {3}2-simplex t0.svg
Face figure 031 5-simplex t1.svg
Edge figure 131 6-demicube.svg
Vertex figure 231 Gosset 2 31 polytope.svg
Coxeter group {\tilde{E}}_7, [33,3,1]
Properties vertex-transitive

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 7-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram.

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the short branch leaves the 6-simplex facet:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the end of the 3-length branch leaves the 321 facet:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 231 polytope.

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The edge figure is determined by removing the ringed node and ringing the neighboring node. This makes 6-demicube (131).

CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The face figure is determined by removing the ringed node and ringing the neighboring node. This makes rectified 5-simplex (031).

CDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

The cell figure is determined by removing the ringed node of the face figure and ringing the neighboring nodes. This makes tetrahedral prism {}×{3,3}.

CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

Kissing number

Each vertex of this tessellation is the center of a 6-sphere in the densest known packing in 7 dimensions; its kissing number is 126, represented by the vertices of its vertex figure 231.

E7 lattice

{\tilde{E}}_7 contains {\tilde{A}}_7 as a subgroup of index 144.[1] Both {\tilde{E}}_7 and {\tilde{A}}_7 can be seen as affine extension from A_7 from different nodes: File:Affine A7 E7 relations.png

The vertex arrangement of 331 is called the E7 lattice.[2] The E7 lattice can also be expressed as a union of the vertices of two A7 lattices, also called A72:

CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.png = CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.png

The E7* lattice (also called E72)[3] has double the symmetry, represented by [[3,33,3]]. The Voronoi cell of the E7* lattice is the 132 polytope, and voronoi tessellation the 133 honeycomb.[4] The E7* lattice is constructed by 2 copies of the E7 lattice vertices, one from each long branch of the Coxeter diagram, and can be constructed as the union of four A7* lattices, also called A74:

CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10l.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01l.png = CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png = dual of CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png.

Related honeycombs

It is in a dimensional series of uniform polytopes and honeycombs, expressed by Coxeter as 3k1 series. A degenerate 4-dimensional case exists as 3-sphere tiling, a tetrahedral hosohedron.

3k1 dimensional figures
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8 9
Coxeter
group
A3A1 A5 D6 E7 {\tilde{E}}_{7}=E7+ {\bar{T}}_8=E7++
Coxeter
diagram
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry [3−1,3,1] [30,3,1] [[31,3,1]] [32,3,1] [33,3,1] [34,3,1]
Order 48 720 46,080 2,903,040
Graph 5-simplex t0.svg 6-cube t5.svg Up2 3 21 t0 E7.svg - -
Name 31,-1 310 311 321 331 341

See also

References

  1. N.W. Johnson: Geometries and Transformations, (2015) Chapter 12: Euclidean symmetry groups, p 177
  2. http://www2.research.att.com/~njas/lattices/E7.html
  3. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Es7.html
  4. The Voronoi Cells of the E6* and E7* Lattices, Edward Pervin
  • H. S. M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Coxeter The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1] GoogleBook
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • R. T. Worley, The Voronoi Region of E7*. SIAM J. Disc. Math., 1.1 (1988), 134-141.
  • Lua error in package.lua at line 80: module 'strict' not found. p124-125, 8.2 The 7-dimensinoal lattices: E7 and E7*