Apeirogonal prism

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Apeirogonal prism
Apeirogonal prism
Type Semiregular tiling
Vertex configuration 120px
4.4.∞
Schläfli symbol t{2,∞}
Wythoff symbol 2 ∞ | 2
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png
CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Symmetry [∞,2], (*∞22)
Rotation symmetry [∞,2]+, (∞22)
Bowers acronym Azip
Dual Apeirogonal dipyramid
Properties Vertex-transitive

In geometry, an apeirogonal prism or infinite prism is the arithmetic limit of the family of prisms; it can be considered an infinite polyhedron or a tiling of the plane.[1]

Thorold Gosset called it a 2-dimensional semi-check, like a single row of a checkerboard.

If the sides are squares, it is a uniform tiling. In general, it can have two sets of alternating congruent rectangles.

Its truncated form can have alternate colored square faces:

240px

Its dual tiling is an apeirogonal bipyramid:

240px

Related tilings and polyhedra

The apeirogonal tiling is the arithmetic limit of the family of prisms t{2, p} or p.4.4, as p tends to infinity, thereby turning the prism into a Euclidean tiling.

An alternation operation can create an apeirogonal antiprism composed of three triangles and one apeirogon at each vertex.

Infinite antiprism.png

Similarly to the uniform polyhedra and the uniform tilings, eight uniform tilings may be based from the regular apeirogonal tiling. The rectified and cantellated forms are duplicated, and as two times infinity is also infinity, the truncated and omnitruncated forms are also duplicated, therefore reducing the number of unique forms to four: the apeirogonal tiling, the apeirogonal hosohedron, the apeirogonal prism, and the apeirogonal antiprism.

(∞ 2 2) Parent Truncated Rectified Bitruncated Birectified
(dual)
Cantellated Omnitruncated
(Cantitruncated)
Snub
Wythoff 2 | ∞ 2 2 2 | ∞ 2 | ∞ 2 2 ∞ | 2 ∞ | 2 2 ∞ 2 | 2 ∞ 2 2 | | ∞ 2 2
Schläfli t0{∞,2} t0,1{∞,2} t1{∞,2} t1,2{∞,2} t2{∞,2} t0,2{∞,2} t0,1,2{∞,2} s{∞,2}
Coxeter CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node.png CDel node.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node 1.png CDel node 1.pngCDel infin.pngCDel node 1.pngCDel 2.pngCDel node 1.png CDel node h.pngCDel infin.pngCDel node h.pngCDel 2x.pngCDel node h.png
Image
Vertex figure
Apeirogonal tiling.png
{∞,2}
Apeirogonal tiling.png
∞.∞
Apeirogonal tiling.png
∞.∞
Infinite prism tiling.png
4.4.∞
Apeirogonal hosohedron.png
{2,∞}
Infinite prism tiling.png
4.4.∞
60px
4.4.∞
Infinite antiprism.png
3.3.3.∞

Notes

  1. Conway (2008), p.263

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Lua error in package.lua at line 80: module 'strict' not found.
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5

<templatestyles src="Asbox/styles.css"></templatestyles>