BD +17° 3248

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
BD +17° 3248
Observation data
Epoch J2000      Equinox J2000
Constellation Hercules
Right ascension 17h 28m 14.46970s[1]
Declination +17° 30′ 35.8400″[1]
Apparent magnitude (V) 9.37[2]
Characteristics
Spectral type KII vw[3]
U−B color index +0.08[2]
B−V color index +0.66[2]
Astrometry
Radial velocity (Rv) –146.55[4] km/s
Proper motion (μ) RA: –46.61[1] mas/yr
Dec.: –23.51[1] mas/yr
Parallax (π) 3.37 ± 1.77[1] mas
Distance approx. 1,000 ly
(approx. 300 pc)
Absolute magnitude (MV) +2.16+0.74
−1.14
[5]
Details
Mass 0.55–0.85[5] M
Surface gravity (log g) 2.30[6] cgs
Temperature 5200±150[5] K
Metallicity [Fe/H] –2.02[6] dex
Age 13.8±4[5] Gyr
Other designations
BD+17 3248, HIP 85487.[3]

BD +17° 3248 is an old Population II star located at a distance of roughly 968 light-years (297 parsecs) in the Galactic Halo. It belongs to the class of ultra-metal-poor stars,[5] especially the very rare subclass of neutron-capture (r-process) enhanced stars.

Since about 2000, this star had been studied with 3 telescopes: a) the Hubble Space Telescope, b) the Keck I telescope and c) the Harlan J. Smith Telescope at the McDonald Observatory of the University of Texas. Elemental abundances in the range from germanium (Z=32) up to uranium (Z=92) were determined. The Hubble Space Telescope was used to observe the ultraviolet part of the stellar spectra. This allowed the measurement of platinum, osmium and, for the first time outside of the Solar System, gold. From barium (Z=56) onward, all elements show a pattern of r-process contribution to the abundances of the elements in the Solar system.[5]

The University of Mainz and University of Basel groups of Karl-Ludwig Kratz and Friedrich-Karl Thielemann performed a comparison between the observed abundances for the stable element europium (Z=63) and the radioactive elements thorium (Z=90) and uranium (Z=92) to the calculated abundances of an r-process in a Type II supernova explosion. This allowed the age of this star to be estimated as about 13.8 billion years with an uncertainty of 4 billion years. A similar age was derived for another ultra-metal-poor star (CS31082-001) from Thorium to uranium ratios. These stars were born several hundred million years after the Big Bang.[5]

References

  1. 1.0 1.1 1.2 1.3 1.4 Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 2.2 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.

External links