From Infogalactic: the planetary knowledge core
(Redirected from Brassicas)
Jump to: navigation, search
Brassica rapa plant.jpg
Brassica rapa
Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Rosids
Order: Brassicales
Family: Brassicaceae
Genus: Brassica

See text.

Brassica (/ˈbræskə/) is a genus of plants in the mustard family (Brassicaceae). The members of the genus are informally known as cruciferous vegetables, cabbages, or mustard plant. Crops from this genus are sometimes called cole crops—derived from the Latin caulis, denoting the stem or stalk of a plant.[1]

Members of brassica commonly used for food include cabbage, cauliflower, broccoli, Brussels sprouts, and some seeds as in the production of canola oil. The genus is known for its important agricultural and horticultural crops and includes a number of weeds, both of wild taxa and escapees from cultivation. It counts over 30 wild species and hybrids plus numerous cultivars and hybrids of cultivated origin. Most are seasonal plants (annuals or biennials), but some are small shrubs. Brassica plants have been the subject of much scientific interest for their agricultural importance. Six particular species (B. carinata, B. juncea, B. oleracea, B. napus, B. nigra and B. rapa) evolved by the combining of chromosomes from three earlier species, as described by the Triangle of U theory.

The genus is native in the wild in Western Europe, the Mediterranean and temperate regions of Asia and many wild species grow as weeds, especially in North America, South America, and Australia.

A dislike for cabbage or broccoli can result from the fact that these plants contain a compound similar to phenylthiocarbamide (PTC), which is bitter or tasteless to some people depending on their 'taste buds'.[2]

In the division of a large number of plants in the plant kingdom into the groups "monocotyledon" and "dicotyledon" all members of Brassica are dicotyledons.[3]



Almost all parts of some species or other have been developed for food, including the root (rutabaga, turnips), stems (kohlrabi), leaves (cabbage, collard greens), flowers (cauliflower, broccoli), buds (Brussels sprouts, cabbage), and seeds (many, including mustard seed, and oil-producing rapeseed). Some forms with white or purple foliage or flowerheads are also sometimes grown for ornament.

Brassica species are sometimes used as food plants by the larvae of a number of Lepidoptera species—see List of Lepidoptera that feed on Brassica.


Brassica vegetables are highly regarded for their nutritional value. They provide high amounts of vitamin C and soluble fiber and contain multiple nutrients with potent anticancer properties: 3,3'-diindolylmethane, sulforaphane and selenium.[4][5] Boiling reduces the level of anticancer compounds, but steaming, microwaving, and stir frying do not result in significant loss.[6] Steaming the vegetable for three to four minutes is recommended to maximize sulforaphane.[7]

Brassica vegetables are rich in indole-3-carbinol, a chemical which boosts DNA repair in cells in vitro and appears to block the growth of cancer cells in vitro.[8][9] They are also a good source of carotenoids, with broccoli having especially high levels.[10] Researchers at the University of California at Berkeley have recently discovered that 3,3'-diindolylmethane in Brassica vegetables is a potent modulator of the innate immune response system with potent antiviral, antibacterial and anticancer activity;[11] however, it also is an antiandrogen but known to be anti-androgenic only in hormone sensitive prostate cancer cells.[12]

These vegetables also contain goitrogens, some of which suppress thyroid function. Goitrogens can induce hypothyroidism and goiter in the absence of normal iodine intake.[13][14]


There is some disagreement among botanists on the classification and status of Brassica species and subspecies.[citation needed] The following is an abbreviated list, with an emphasis on economically important species.

Other species formerly placed in Brassica

Genome sequencing and genetics

Bayer CropScience (in collaboration with BGI-Shenzhen, China, Keygene N.V., the Netherlands and the University of Queensland, Australia) announced it had sequenced the entire genome of rapeseed/canola (Brassica napus) and its constituent genomes present in B. rapa and B. oleracea in 2009.[15] The B. rapa genome was sequenced by the Multinational Brassica Genome Project in 2011.[16] This also represents the A genome component of the amphidiploid crop species B. napus and B. juncea.[17]

See also


  1. "caulis". Wordnik. Retrieved 25 May 2013.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. Overfield, Theresa (1995). "Phenylthiocarbamide". Biological Variations in Health and Illness: Race, Age, and Sex Differences. CRC Press. pp. 102–3. ISBN 978-0-8493-4577-7.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. USDA Plants web page: Accessed: 2 December 2014
  4. Finley, John W.; Sigrid-Keck, Anna; Robbins, Rebecca J.; Hintze, Korry J. (2005). "Selenium Enrichment of Broccoli: Interactions between Selenium and Secondary Plant Compounds". The Journal of Nutrition. 135 (5): 1236–8. PMID 15867310.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. Banerjee, Sanjeev; Parasramka, Mansi A.; Sarkar, Fazlul H. (2012). "Cellular, Molecular and Biological Insight into Chemopreventive and Therapeutic Potential of 3,3'-Diindolylmethane (DIM)". In Sarkar, Fazlul H. (ed.). Nutraceuticals and Cancer. pp. 111–33. doi:10.1007/978-94-007-2630-7_6. ISBN 978-94-007-2629-1.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. Song, Lijiang; Thornalley, Paul J. (2007). "Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables". Food and Chemical Toxicology. 45 (2): 216–24. doi:10.1016/j.fct.2006.07.021. PMID 17011103. Unknown parameter |laysummary= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Matusheski, Nathan V.; Swarup, Ranjan; Juvik, John A.; Mithen, Richard; Bennett, Malcolm; Jeffery, Elizabeth H. (2006). "Epithiospecifier Protein from Broccoli (Brassica oleraceaL. Ssp.italica) Inhibits Formation of the Anticancer Agent Sulforaphane". Journal of Agricultural and Food Chemistry. 54 (6): 2069–76. doi:10.1021/jf0525277. PMID 16536577. Unknown parameter |laysummary= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Fan, S; Meng, Q; Auborn, K; Carter, T; Rosen, E M (2006). "BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells". British Journal of Cancer. 94 (3): 407–26. doi:10.1038/sj.bjc.6602935. PMC 2361140. PMID 16434996. Unknown parameter |laysummary= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. Wu, Yongsheng; Feng, Xiaoling; Jin, Yucui; Wu, Zhaojia; Hankey, William; Paisie, Carolyn; Li, Lei; Liu, Fengjuan; et al. (2010). "A Novel Mechanism of Indole-3-Carbinol Effects on Breast Carcinogenesis Involves Induction of Cdc25A Degradation". Cancer Prevention Research. 3 (7): 818–28. doi:10.1158/1940-6207.CAPR-09-0213. PMID 20587702. Unknown parameter |laysummary= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Farnham, Mark W.; Kopsell, Dean A. (2009). "Importance of Genotype on Carotenoid and Chlorophyll Levels in Broccoli Heads". HortScience. 44 (5): 1248–53. Unknown parameter |laysummary= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Vivar, Omar I.; Lin, Chia-Lei; Firestone, Gary L.; Bjeldanes, Leonard F. (2009). "3,3′-Diindolylmethane induces a G1 arrest in human prostate cancer cells irrespective of androgen receptor and p53 status". Biochemical Pharmacology. 78 (5): 469–76. doi:10.1016/j.bcp.2009.05.008. PMC 2706920. PMID 19433067.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. Le, Hien T.; Schaldach, Charlene M.; Firestone, Gary L.; Bjeldanes, Leonard F. (2003). "Plant-derived 3,3′-Diindolylmethane Is a Strong Androgen Antagonist in Human Prostate Cancer Cells". Journal of Biological Chemistry. 278 (23): 21136–45. doi:10.1074/jbc.M300588200. PMID 12665522.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Srilakshmi, B. (2006). Nutrition Science. New Age International. pp. 186–7. ISBN 978-81-224-1633-6. Retrieved 24 May 2013.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. "Bayer CropScience first to sequence the entire genome of rapeseed/canola" (Press release). Bayer CropScience. 9 October 2009. Retrieved 25 May 2013.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Wang, Xiaowu; Wang, Hanzhong; Wang, Jun; Sun, Rifei; Wu, Jian; Liu, Shengyi; Bai, Yinqi; Mun, Jeong-Hwan; et al. (2011). "The genome of the mesopolyploid crop species Brassica rapa". Nature Genetics. 43 (10): 1035–9. doi:10.1038/ng.919. PMID 21873998.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. "". Rothamsted Research. Retrieved 25 May 2013.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>[verification needed]