Carbon disulfide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
This article is about the chemical substance CS2. For the software suite by Adobe Systems, see Adobe Creative Suite. For the cycle super-highway in London, see List of cycle routes in London.
Carbon disulfide
Carbon disulfide
IUPAC name
Other names
Carbon bisulfide
75-15-0 YesY
ChEBI CHEBI:23012 YesY
ChemSpider 6108 YesY
EC Number 200-843-6
Jmol 3D model Interactive image
KEGG C19033 N
PubChem 6348
RTECS number FF6650000
UNII S54S8B99E8 YesY
UN number 1131
Molar mass 76.13 g·mol−1
Appearance Colorless liquid
Impure: light-yellow
Odor Chloroform (pure)
Foul (commercial)
Density 1.539 g/cm3 (-186°C)
1.2927 g/cm3 (0 °C)
1.266 g/cm3 (25 °C)[1]
Melting point −111.61 °C (−168.90 °F; 161.54 K)
Boiling point 46.24 °C (115.23 °F; 319.39 K)
0.258 g/100 mL (0 °C)
0.239 g/100 mL (10 °C)
0.217 g/100 mL (20 °C)[2]
0.014 g/100 mL (50 °C)[1]
Solubility Soluble in alcohol, ether, benzene, oil, CHCl3, CCl4
Solubility in formic acid 4.66 g/100 g[1]
Solubility in dimethyl sulfoxide 45 g/100 g (20.3 °C)[1]
Vapor pressure 48.1 kPa (25 °C)
82.4 kPa (40 °C)[3]
Viscosity 0.436 cP (0 °C)
0.363 cP (20 °C)
0 D (20 °C)[1]
75.73 J/mol·K[1]
151 J/mol·K[1]
88.7 kJ/mol[1]
64.4 kJ/mol[1]
1687.2 kJ/mol[3]
Vapor pressure {{{value}}}
Related compounds
Related compounds
Carbon dioxide
Carbonyl sulfide
Carbon diselenide
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Phase behaviour
N verify (what is YesYN ?)
Infobox references

Carbon disulfide is a colorless volatile liquid with the formula CS2. The compound is used frequently as a building block in organic chemistry as well as an industrial and chemical non-polar solvent. It has an "ether-like" odor, but commercial samples are typically contaminated with foul-smelling impurities, such as carbonyl sulfide.[5]

Occurrence and manufacture

Small amounts of carbon disulfide are released by volcanic eruptions and marshes. CS2 once was manufactured by combining carbon (or coke) and sulfur at high temperatures. A lower-temperature reaction, requiring only 600 °C, utilizes natural gas as the carbon source in the presence of silica gel or alumina catalysts:[5]

2 CH4 + S8 → 2 CS2 + 4 H2S

The reaction is analogous to the combustion of methane. It is isoelectronic with carbon dioxide. CS2 is highly flammable:

CS2 + 3 O2 → CO2 + 2 SO2

Global production/consumption of carbon disulfide is approximately one million tonnes, with China consuming 49%, followed by India at 13%, mostly for the production of rayon fiber.[6] USA production in 2007 was 56,000 tonnes.[7]


Compared to CO2, CS2 is more reactive toward nucleophiles and more easily reduced. These differences in reactivity can be attributed to the weaker π donor-ability of the sulfido centers, which renders the carbon more electrophilic. It is widely used in the synthesis of organosulfur compounds such as metam sodium, a soil fumigant and is commonly used in the production of the soft fabric viscose.

Addition of nucleophiles

Nucleophiles such as amines afford dithiocarbamates:

2 R2NH + CS2 → [R2NH2+][R2NCS2]

Xanthates form similarly from alkoxides:

RONa + CS2 → [Na+][ROCS2]

This reaction is the basis of the manufacture of regenerated cellulose, the main ingredient of viscose, rayon and cellophane. Both xanthates and the related thioxanthates (derived from treatment of CS2 with sodium thiolates) are used as flotation agents in mineral processing.

Sodium sulfide affords trithiocarbonate:

Na2S + CS2 → [Na+]2[CS32−]


Chlorination of CS2 is the principal route to carbon tetrachloride:[5]

CS2 + 3 Cl2 → CCl4 + S2Cl2

This conversion proceeds via the intermediacy of thiophosgene, CSCl2.

Coordination chemistry

CS2 is a ligand for many metal complexes, forming pi complexes. One example is CpCo(η2-CS2)(PMe3).[8]

Carbon disulfide hydrolase

Carbon disulfide is naturally formed in the mudpots of volcanic solfataras. It serves as a source of hydrogen sulfide, which is an electron donor for certain organisms that oxidize it into sulphuric acid or related sulfur oxides. The hyperthermophilic Acidianus strain was found to convert CS2 into H2S and CO2. The enzyme responsible for this conversion is termed carbon disulfide hydrolase.[9]

The enzyme can be obtained in both apoenzyme and holoenzyme forms. The enzyme is predicted to have an isoelectric point of 5.92 and a molecular mass of 23,576 Da. The enzyme is hexadecameric.[9]

The apoenzyme form, lacking the zinc cofactor, has a molecular weight of 382815.4 g/mol. The chloride ion and the 3,6,9,12,15,18,21,24,27,30,33,36,39-tridecaoxahentetracontane-1,41-diol (C28H58O15) are the two main ligands seen on the enzyme in this form. There are 16 polymer chains seen in this form contributing to the heaviness of the enzyme. This form is also sometimes termed the selenomethionine form.[10]

CS2 hydrolase in its holoenzyme has a cofactor bound to it. In this form the only ligand to be found is the zinc ion and the molecular weight of the enzyme overall is 189404.8 g/mol. There are only eight polymer chains seen in this form and this may be due to the fact that the enzyme catalyzes the conversion of CS2 in this form.[10]

The enzyme is similar to that of carbonic anhydrases. The enzyme monomer of CS2 hydrolase displays a typical β-carbonic anhydrase fold and active site. Two of these monomers form a closely intertwined dimer with a central β-sheet capped by anα-helical domain. Four dimers form a square octameric ring through interactions of the long arms at the N and C termini. Similar ring structures have been seen in strains of carbonic anhydrases, however, in CS2 hydrolase, two octameric rings form a hexadecamer by interlocking at right angles to each other. This results in the blocking of the entrance to the active site and the formation of a single 15-Å-long, highly hydrophobic tunnel that functions as a specificity filter. This provides a key difference between carbonic anhydrase and CS2 hydrolase. This tunnel determines the enzyme's substrate specificity for CS2, which is hydrophobic as well.


The mechanism by this hydrolase converts CS2 into H2S is similar to that of how carbonic anhydrase hydrates CO2 to HCO3.[citation needed] This similarity points to a likely mechanism. The zinc at the active site is tetrahedral, being coordinated by Cys 35, His 88, Cys 91 and water.[citation needed] The water is deprotonated to give a zinc hydroxide that adds the substrate to give a Zn-O-C(S)SH intermediate.[citation needed] A similar process is proposed[by whom?] to convert COS into CO2.[citation needed]

CS2 + H2O → COS + H2S
COS + H2O → CO2 + H2S


CS2 polymerizes upon photolysis or under high pressure to give an insoluble material called "Bridgman's black", named after the discoverer of the polymer, P. W. Bridgman. Trithiocarbonate (-S-C(S)-S-) linkages comprise, in part, the backbone of the polymer, which is a semiconductor.[11]



Used for fumigation in airtight storage warehouses, airtight flat storages, bins, grain elevators, railroad box cars, shipholds, barges and cereal mills.[12]


Carbon disulfide is used as an insecticide for the fumigation of grains, nursery stock, in fresh fruit conservation and as a soil disinfectant against insects and nematodes.[13]


Carbon disulfide is a solvent for phosphorus, sulfur, selenium, bromine, iodine, fats, resins, rubber, and asphalt.[14] It has been used in the purification of single-walled carbon nanotubes.[15]


The principal industrial uses of carbon disulfide are the manufacture of viscose rayon, cellophane film, carbon tetrachloride and xanthogenates and electronic vacuum tubes.

Working Fluid

Various attempts were made in the 19th century to use carbon disulfide as the working fluid in steam engines and locomotive applications, due to its low boiling point; it would be either directly heated by the fuel, or would be used to recover waste heat from the combustion gases of other fuels and the condensing of steam in a traditional boiler. These experiments were never successful, both due to the low temperatures involved and the extreme risk of both poisoning and explosion.[16]

Spectroscope prisms

Due to its high optical dispersion it was used in some spectroscopes.[17]

Health effects

At high levels, carbon disulfide may be life-threatening because it affects the nervous system. Significant safety data comes from the viscose rayon industry, where both carbon disulfide as well as small amounts of H2S may be present.

Carbon disulfide has been linked to Toxin-induced parkinsonism. [18]

See also


  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
  2. Seidell, Atherton; Linke, William F. (1952). Solubilities of Inorganic and Organic Compounds. Van Nostrand. 
  3. 3.0 3.1 Carbon disulfide in Linstrom, P.J.; Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. (retrieved 2014-05-27)
  4. Cite error: Invalid <ref> tag; no text was provided for refs named sigma
  5. 5.0 5.1 5.2 Holleman, A. F.; Wiberg, E. (2001), Inorganic Chemistry, San Diego: Academic Press, ISBN 0-12-352651-5 
  6. "Carbon Disulfide report from IHS Chemical". Retrieved June 15, 2013. 
  7. "Chemical profile: carbon disulfide from". Retrieved June 15, 2013. 
  8. Werner, H. (1982). "Novel Coordination Compounds formed from CS2 and Heteroallenes". Coordination Chemistry Reviews. 43: 165–185. doi:10.1016/S0010-8545(00)82095-0. 
  9. 9.0 9.1 Smeulders MJ, Barends TR, Pol A, Scherer A, Zandvoort MH, Udvarhelyi A, Khadem AF, Menzel A, Hermans J, Shoeman RL, Wessels HJ, van den Heuvel LP, Russ L, Schlichting I, Jetten MS, Op den Camp HJ (2011). "Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon". Nature. 478 (7369): 412–416. Bibcode:2011Natur.478..412S. doi:10.1038/nature10464. 
  10. 10.0 10.1 Smeulders, MJ.; Barends, TR.; Pol, A.; Scherer, A.; Zandvoort, MH.; Udvarhelyi, A.; Khadem, AF.; Menzel, A.; Hermans, J.; Shoeman, RL.; Wessels, HJ.; Van den Heuvel, LP.; Russ, L.; Schlichting, I.; Jetten, MS.; Op den Camp, HJ. RCSB Protein Data Bank, 2011, doi:10.2210/pdb3teo/pdb
  11. Bungo Ochiai; Takeshi Endo. "Carbon dioxide and carbon disulfide as resources for functional polymers". Prog. Polym. Sci. 30 (2): 183–215. doi:10.1016/j.progpolymsci.2005.01.005. 
  12. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9. 
  13. Worthing, C. R.; Hance. R. J. (1991). The Pesticide Manual, A World Compendium (9th ed.). British Crop Protection Council. ISBN 9780948404429. 
  14. "Carbon Disulfide". Akzo Nobel. 
  15. Park, T.-J.; Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. (2006). "Purification strategies and purity visualization techniques for single-walled carbon nanotubes". Journal of Materials Chemistry. 16 (2): 141–154. doi:10.1039/b510858f. 
  16. "Carbon Disulfide Engines". Douglas Self. 
  17. "How to work with the spectroscope. John Browning. 2nd Ed 1882

External links