Composite gravity
From Infogalactic: the planetary knowledge core
In theoretical physics, composite gravity refers to models that attempted to derive general relativity in a framework where the graviton is constructed as a composite bound state of more elementary particles, usually fermions. A theorem by Steven Weinberg and Edward Witten shows that this is not possible in Lorentz covariant theories: massless particles with spin greater than one are forbidden. The AdS/CFT correspondence may be viewed as a loophole in their argument. However, in this case not only the graviton is emergent; a whole spacetime dimension is emergent, too.[1]
See also
References
<templatestyles src="Reflist/styles.css" />
Cite error: Invalid <references>
tag; parameter "group" is allowed only.
<references />
, or <references group="..." />
<templatestyles src="Asbox/styles.css"></templatestyles>
- ↑ Lua error in package.lua at line 80: module 'strict' not found.