# Constant elasticity of variance model

In mathematical finance, the **CEV** or constant elasticity of variance model is a stochastic volatility model, which attempts to capture stochastic volatility and the leverage effect. The model is widely used by practitioners in the financial industry, especially for modelling equities and commodities. It was developed by John Cox in 1975^{[1]}

## Contents

## Dynamic

The **CEV** model describes a process which evolves according to the following stochastic differential equation:

The constant parameters satisfy the conditions .

The parameter controls the relationship between volatility and price, and is the central feature of the model. When we see the so-called leverage effect, commonly observed in equity markets, where the volatility of a stock increases as its price falls. Conversely, in commodity markets, we often observe , the so-called inverse leverage effect,^{[2]}^{[3]} whereby the volatility of the price of a commodity tends to increase as its price increases.

## See also

## References

- ↑ Cox, J. "Notes on Option Pricing I: Constant Elasticity of Diffusions." Unpublished draft, Stanford University, 1975.
- ↑ Emanuel, D.C., and J.D. MacBeth, 1982. "Further Results of the Constant Elasticity of Variance Call Option Pricing Model." Journal of Financial and Quantitative Analysis, 4 : 533–553
- ↑ Geman, H, and Shih, YF. 2009. "Modeling Commodity Prices under the CEV Model." The Journal of Alternative Investments 11 (3): 65–84. doi:10.3905/JAI.2009.11.3.065

## External links

- Asymptotic Approximations to CEV and SABR Models
- Price and implied volatility under CEV model with closed formulas, Monte-Carlo and Finite Difference Method
- Price and implied volatility of European options in CEV Model delamotte-b.fr