From Infogalactic: the planetary knowledge core
Jump to: navigation, search
A Draco lizard showing camouflage methods including background matching, disruptive coloration, reduction of shadow, and cryptic behavior in Bandipur National Park

In ecology, crypsis is the ability of an organism to avoid observation or detection by other organisms. It may be either a predation strategy or an antipredator adaptation, and methods include camouflage, nocturnality, subterranean lifestyle, transparency, and mimicry.[1] The word can also be used in the context of eggs[2] and pheromone production.[3] Crypsis can in principle involve visual, olfactory or auditory camouflage.[4]


There is a strong evolutionary pressure for animals to blend into their environment or conceal their shape, for prey animals to avoid predators and for predators to be able to avoid detection by prey. Exceptions include large herbivores without natural enemies, brilliantly-colored birds that rely on flight to escape predators, and venomous animals that advertise with bright colors. Cryptic animals include the tawny frogmouth (feather patterning resembles bark), the tuatara (hides in burrows all day; nocturnal), some jellyfish (transparent), the leafy sea dragon, and the flounder (covers itself in sediment).

Varieties of crypsis

Crypsis may occur in a variety of ways, each of which causes the organism in question to blend with its background in at least one of the senses, although visual crypsis is the best known.


Camouflage allows animals like this disruptively patterned spider to capture prey more easily.

Many animals have evolved so that they visually resemble their surroundings, using some sort of natural camouflage that may match the color and texture of the surroundings (cryptic coloration) and/or break up the visual outline of the animal itself (disruptive coloration). Such animals may resemble rocks, sand, twigs, leaves, and even bird droppings.[5]

Some animals have chromatic response, changing colour in changing environments, either seasonally (ermine, snowshoe hare) or far more rapidly with chromatophores in their integument (chameleon, cephalopods).

Countershading, the use of different colors on upper and lower surfaces in graduating tones from a light belly to a darker back, is common in the sea and on land. This is sometimes called Thayer's law, after the American artist Abbott H. Thayer, who published a paper on the form in 1896, explaining that countershading paints out shadows to make solid objects appear flat, reversing the way artists use paint to make flat paintings contain solid objects. Where the background is brighter than can be achieved even with white pigment, counter-illumination in marine animals such as squid can use light to match the background.

Some animals actively camouflage themselves with local materials. The decorator crabs attach plants, animals, small stones or shell fragments to their carapaces, providing camouflage that matches the local environment. Some species preferentially select stinging animals such as sea anemones or noxious plants, benefiting from aposematism as well as, or instead of, crypsis.[6]


Some animals, in both terrestrial and aquatic environments, appear to camouflage their odour, which might otherwise attract predators.[7] Numerous arthropods, both insects and spiders, mimic ants, whether to avoid predation, to hunt ants, or (for example in the Large Blue Butterfly caterpillar) to trick the ants into feeding them.[8] Pirate perch (Aphredoderus sayanus) may exhibit chemical crypsis, making them undetectable to frogs and insects colonizing ponds.[9]


Some insects, notably some Noctuid moths (such as the Large Yellow Underwing) and some tiger moths (such as the Garden Tiger), were originally theorized to defend themselves against predation by echolocating bats, both by passively absorbing sound with soft, fur-like body coverings, and by actively creating sounds to mimic echoes from other locations or objects (a "phantom echo" which might therefore represent "auditory crypsis"), with alternative theories about interfering with the bats' echolocation ("jamming").[10][11] Subsequent research has provided evidence for only two functions of moth sounds, neither of which involve "auditory crypsis"; tiger moth species appear to cluster into two distinct groups: one type produces sounds as acoustic aposematism (warning the bats that the moths are unpalatable, e.g.[12]) or are acoustic mimics of unpalatable moths,[13] and another type that uses sonar jamming. In the latter type of moth, detailed analyses failed to support a “phantom echo” mechanism underlying sonar jamming, and instead pointed towards echo interference.[14]


There is often a self-perpetuating co-evolution, or evolutionary arms race, between the perceptive abilities of animals for whom it is beneficial to be able to detect the cryptic animal, versus the cryptic characteristics of the hiding species. Different aspects of crypsis and sensory abilities may be more or less pronounced in given predator-prey species pairs.

Zoologists need special methods to study cryptic animals including biotelemetry techniques such as radio tracking, mark and recapture, and enclosures or exclosures. Cryptic animals tend to be overlooked in studies of biodiversity and ecological risk assessment.



  1. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  2. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  3. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  4. "Definition of Crypsis". Amateur Entomologists' Society. Retrieved August 19, 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. "All Lives Transform:Adaptation- Mimicry". 2007-02-14. Retrieved 2012-01-05.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. Hultgren, Kristin; Stachowicz, Jay in Stevens, M and Merilaita, S (2011). "Animal Camouflage" (PDF). Camouflage in decorator crabs: Camouflage in decorator crabs. Cambridge University Press. Retrieved December 13, 2012. <templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Michael R. Conover. Predator-Prey Dynamics: the role of olfaction. CRC Press. 2007. ISBN 978-0-8493-9270-2
  8. Donisthorpe, Horace (January 1922). Mimicry of Ants by Other Arthropods. Transactions of the Royal Entomological Society of London. 69, Issue 3-4. pp. 307–311.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  10. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  11. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  12. N.I. Hristov, W.E. Conner. 2005. Sound strategy: acoustic aposematism in the bat–tiger moth arms race. Naturwissenschaften 92: 164-169.
  13. J.R. Barber, W.E. Conner. 2007. Acoustic mimicry in a predator-prey interaction. Proceedings of the National Academy of Sciences 104:9331-9334.
  14. A.J. Corcoran, W.E. Conner, J.R. Barber. 2010. Anti-bat tiger moth sounds: Form and function. Current Zoology 56 (3): 358–369.
  15. Amazonia Org. "Amazonia". Retrieved 21 August 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

External links