Entropy of entanglement

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

The entropy of entanglement is an entanglement measure for many-body quantum state.


Bipartite entanglement entropy

Bipartite entanglement entropy is defined with respect to a bipartition of a state into two partitions A and B.

Von Neumann entanglement entropy

The bipartite Von Neumann entanglement entropy S is defined as the Von Neumann entropy of either of its reduced states; the result is independent of which one we pick. That is, for a pure state \rho_{AB}= |\Psi\rangle\langle\Psi|_{AB}, it is given by:

\mathcal{S}(\rho_A)=  -\operatorname{Tr}[\rho_A\operatorname{log}\rho_A] =  -\operatorname{Tr}[\rho_B\operatorname{log}\rho_B] = \mathcal{S}(\rho_B)

where \rho_{A}=\operatorname{Tr}_B(\rho_{AB}) and \rho_{B}=\operatorname{Tr}_A(\rho_{AB}) are the reduced density matrices for each partition.

Many entanglement measures reduce to the entropy of entanglement when evaluated on pure states. Among those are:

Some entanglement measures that do not reduce to the entropy of entanglement are:

Renyi entanglement entropies

The Renyi entanglement entropies \mathcal{S}_\alpha are also defined in terms of the reduced density matrices, and a Renyi index \alpha \geq 0. It is defined as the Rényi entropy of the reduced density matrices:

Failed to parse (Missing <code>texvc</code> executable. Please see math/README to configure.): \mathcal{S}_\alpha (\rho_A) = \frac{1}{1-\alpha} \text{log} \text{Tr} (\rho^\alpha) = \mathcal{S}_\alpha(\rho_B)


Note that the limit \alpha\rightarrow 1, The Renyi entanglement entropy approaches the Von Neumann entanglement entropy.

Area law of bipartite entanglement entropy

A quantum state satisfies an area law if the leading term of the entanglement entropy grows at most proportionally with the boundary between the two partitions. Area laws are remarkably common for ground states of quantum many-body systems. This has important applications, one such application being that it greatly reduces the complexity of quantum many-body systems. The density matrix renormalization group and matrix product states, for example, implicitly rely on such area laws. [2]

References/sources

  1. http://www.quantiki.org/wiki/Entropy_of_entanglement
  2. Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.


<templatestyles src="Asbox/styles.css"></templatestyles>