File:Eccentric Habitable Zones.jpg

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Original file(3,600 × 2,400 pixels, file size: 657 KB, MIME type: image/jpeg)

Summary

While Earth and the other planets in our solar system travel around the sun in near-circular orbits, planets in other systems can have more comet-like orbits in which the distance from the planet to star varies. Such orbits, termed eccentric, would cause the planet to move in and out of the habitable zone. A habitable zone, shown in green here, is defined as the region around a star where liquid water, an essential ingredient for life as we know it, could potentially be present. Earth always remains in its habitable zone. The hypothetical planet is depicted here moving through the habitable zone and then further out into a long, cold winter. During this phase of the orbit, any liquid water on the planet will freeze at the surface; however, the possibility remains that life could, in theory, hibernate beneath the surface.

Licensing

Lua error in package.lua at line 80: module 'strict' not found.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current07:23, 12 January 2017Thumbnail for version as of 07:23, 12 January 20173,600 × 2,400 (657 KB)127.0.0.1 (talk)While Earth and the other planets in our solar system travel around the sun in near-circular orbits, planets in other systems can have more comet-like orbits in which the distance from the planet to star varies. Such orbits, termed eccentric, would cause the planet to move in and out of the habitable zone. A habitable zone, shown in green here, is defined as the region around a star where liquid water, an essential ingredient for life as we know it, could potentially be present. Earth always remains in its habitable zone. The hypothetical planet is depicted here moving through the habitable zone and then further out into a long, cold winter. During this phase of the orbit, any liquid water on the planet will freeze at the surface; however, the possibility remains that life could, in theory, hibernate beneath the surface.
  • You cannot overwrite this file.

The following page links to this file: