Goldberg polyhedron

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Icosahedral Goldberg polyhedra with pentagons in red
Conway polyhedron Dk5k6st.png
G(1,4)
Conway polyhedron dadkt5daD.png
G(4,4)
180px
G(7,0)
Goldberg polyhedron 5 3.png
G(5,3)

A Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described by Michael Goldberg (1902–1990) in 1937. They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. G(5,3) and G(3,5) are enantiomorphs of each other. A consequence of Euler's polyhedron formula is that there will be exactly twelve pentagons.

Icosahedral symmetry ensures that the pentagons are always regular, although many of the hexagons may not be. Typically all of the vertices lie on a sphere.

It is a dual polyhedron of a geodesic sphere, with all triangle faces and 6 triangles per vertex, except for 12 vertices with 5 triangles.

Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted G(m,n). A dodecahedron is G(1,0) and a truncated icosahedron is G(1,1).

A similar technique can be applied to construct polyhedra with tetrahedral symmetry and octahedral symmetry. These polyhedra will have triangles or squares rather than pentagons. These variations are given Roman numeral subscripts: GIII(n,m), GIV(n,m), and GV(n,m).

Polyhedral elements

The number of vertices, edges, and faces of G(m,n) can be computed from m and n, with T = m2 + mn + n2 = (m + n)2 − mn, depending on one of three symmetry systems:[1]

System Vertices Edges Faces Faces by type
Tetrahedral
GIII(m,n)
4T 6T 2T + 2 4 {3} and 2(T − 1) {6}
Octahedral
GIV(m,n)
8T 12T 4T + 2 6 {4} and 4(T − 1) {6}
Icosahedral
GV(m,n)
20T 30T 10T + 2 12 {5} and 10(T − 1) {6}

Small examples by symmetry family

A few polyhedra are given with Conway polyhedron notation starting with (T)etrahedron, (C)ube, (O)ctahedron, and (D)odecahedron, (I)cosahedron seeds. The operator dk (dual kis) generates G(1,1). The chamfer operator, c, replaces all edges by hexagons and transforms G(m,n) to G(2m,2n). In addition, the tk operator, transforms G(m,n) to G(3m,3n).

Class 1 G(0,n)
System G(0,1)
T = 1
G(0,2)
T = 4
G(0,3)
T = 9
G(0,4)
T = 16
G(0,5)
T = 25
G(0,6)
T = 36
G(0,8)
T = 64
G(0,9)
T = 81
G(0,12)
T = 144
G(0,16)
T = 256
Tetrahedral
GIII(0,n)
Tetrahedron.png
(T)
Alternate truncated cube.png
(cT)
50px
(tkT)
(ccT) (ctkT) (cccT) 50px
(tktkT)
(cctkT) (ccccT)
Octahedral
GIV(0,n)
Hexahedron.png
(C)
Truncated rhombic dodecahedron2.png
(cC)
Conway polyhedron dktO.png
(tkC)
50px
(ccC)
(ctkC) 50px
(cccC)
50px
(tktkC)
(cctkC) (ccccC)
Icosahedral
GV(0,n)
Dodecahedron.png
(D)
Truncated rhombic triacontahedron.png
(cD)
Conway polyhedron Dk6k5tI.png
(tkD)
Conway polyhedron dk6k5at5daD.png
(ccD)
50px
 
Conway polyhedron tkt5daD.png
(ctkD)
50px
(cccD)
50px
(tktkD)
50px
(cctkD)
50px
(ccccD)
Class 2, G(n,n)
System G(1,1)
T = 3
G(2,2)
T = 12
G(3,3)
T = 27
G(4,4)
T = 48
G(6,6)
T = 108
G(8,8)
T = 192
G(9,9)
T = 243
Tetrahedral
GIII(n,n)
Uniform polyhedron-33-t12.png
(tT)
(ctT) 50px
(tktT)
(cctT) (ctktT) (ccctT) (tktktT)
Octahedral
GIV(n,n)
Truncated octahedron.png
(tO)
50px
(ctO)
50px
(tktO)
50px
(cctO)
(ctktO) (ccctO) (tktktO)
Icosahedral
GV(n,n)
Truncated icosahedron.png
(tI)
Conway polyhedron dkt5daD.png
(ctI)
Conway polyhedron dkdktI.png
(tktI)
Conway polyhedron dadkt5daD.png
(cctI)
(ctktI) (ccctI) (tktktI)
Class 3, G(m,n)
System G(2,1)
T = 7
G(3,1)
T = 13
G(3,2)
T = 19
G(4,1)
T = 21
G(4,2)
T = 28
G(4,3)
T = 37
G(5,1)
T = 31
G(5,2)
T = 39
G(5,3)
T = 49
G(5,4)
T = 61
Tetrahedral
GIII(m,n)
Octahedral
GIV(m,n)
Icosahedral
GV(m,n)
Conway polyhedron Dk5sI.png
(wD)
Goldberg polyhedron 3 1.png
50px
Conway polyhedron Dk5k6st.png
(tk5sD)
Conway polyhedron dk6k5adk5sD.png
(cwD)
50px 50px Goldberg polyhedron 5 3.png

Icosahedral G(0,n) polyhedra

Goldberg polyhedra of the form G(0,n) have full icosahedral symmetry, Ih, [5,3], (*532). G(0,n) has 10(n2 − 1) hexagons.

Index G(0,1) G(0,2) G(0,3) G(0,4) G(0,5) G(0,6)
Image Uniform polyhedron-53-t0.png Truncated rhombic triacontahedron.png Conway polyhedron Dk6k5tI.png Conway polyhedron dk6k5at5daD.png 120px Conway polyhedron tkt5daD.png
Conway notation D cD[2] dktI=tdtI[3] ccD[4] cdktI[5]
Vertices 20 80 180 320 500 720
Edges 30 120 270 480 750 1080
Hexagons 0 30 80 150 240 350
Index G(0,7) G(0,8) G(0,9) G(0,10) G(0,12) G(0,16) G(0,n)
Image 120px 120px 120px 120px 120px 120px 120px
Conway notation cccD[6] tdtdtkD[7] ccccD[8]
Vertices 980 1280 1620 2000 2880 5120 20n2
Edges 1470 1920 2430 3000 4320 7650 30n2
Hexagons 480 630 800 990 1430 2550 10(n2 − 1)

Icosahedral G(n,n) polyhedra

Goldberg polyhedra of the form G(n,n) have full icosahedral symmetry, Ih, [5,3], (*532). G(n,n) has 10(3n2 − 1) hexagons.

Index G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(n,n)
Image 120px Conway polyhedron dkt5daD.png Conway polyhedron dkdktI.png Conway polyhedron dadkt5daD.png 120px
Conway notation tI[9] ctI[10] tktI[11] cctI[12] ctktI[13]
Vertices 60 240 540 960 1500 2160 60n2
Edges 90 360 810 1440 2250 3240 90n2
Hexagons 20 110 260 470 740 1070 10(3n2 − 1)

Icosahedral G(m,n) polyhedra

General Goldberg polyhedra (m > 0 and n > 0) with m ≠ n have chiral (rotational) icosahedral symmetry, I, [5,3] + , (532). In such cases G(n,m) and G(m,n) are mirror images.

Index G(1,0) G(1,1) G(1,2) G(1,3) G(1,4) G(1,5) G(1,n)
Image Uniform polyhedron-53-t0.png 120px Conway polyhedron Dk5sI.png Goldberg polyhedron 3 1.png Conway polyhedron Dk5k6st.png 120px ...
Conway notation D dkD[14] wD[15] tk5sD[16]
Vertices 20 60 140 260 420 620 20(n2 + n + 1)
Edges 30 90 210 390 630 930 30(n2 + n + 1)
Hexagons 0 20 60 120 200 300 10n(n + 1)
Index G(2,0) G(2,1) G(2,2) G(2,3) G(2,4) G(2,5) G(2,n)
Image Truncated rhombic triacontahedron.png Conway polyhedron Dk5sI.png Conway polyhedron dkt5daD.png 120px Conway polyhedron dk6k5adk5sD.png
Conway notation cD[17] dk5sD=t5gD=wD[18] dkt5daD[19] cdk5sD = wcD[20]
Vertices 80 140 240 380 560 20(n2 + 2n + 4)
Edges 120 210 360 570 840 30(n2 + 2n + 4)
Hexagons 30 60 110 180 270 10(n2 + 2n + 3)
Index G(3,0) G(3,1) G(3,2) G(3,3) G(3,4) G(3,5) G(3,n)
Image Conway polyhedron Dk6k5tI.png Goldberg polyhedron 3 1.png 120px Conway polyhedron dkdktI.png 120px Goldberg polyhedron 5 3.png
Conway notation tkD[21] wwD[22]
Vertices 180 260 380 540 740 980 20(n2 + 3n + 9)
Edges 270 390 570 810 1110 1470 30(n2 + 3n + 9)
Hexagons 80 120 180 260 360 480 10(n2 + 3n + 8)
Index G(4,0) G(4,1) G(4,2) G(4,3) G(4,4) G(4,5) G(4,6) G(4,n)
Image Conway polyhedron dk6k5at5daD.png 120px Conway polyhedron dk6k5adk5sD.png 120px Conway polyhedron dadkt5daD.png
Conway notation ccD[23] tk5sD[24] wcD[25] dkt5dadkt5daD[26]
Vertices 320 420 560 740 960 1220 1520 20(n2 + 4n + 16)
Edges 480 630 840 1110 1440 1830 2280 30(n2 + 4n + 16)
Hexagons 150 200 270 360 470 600 750 10(n2 + 4n + 15)
Index G(5,0) G(5,1) G(5,2) G(5,3) G(5,4) G(5,5) G(5,6) G(5,n)
Image 120px 120px Goldberg polyhedron 5 3.png
Vertices 500 620 780 980 1220 1500 1820 20(n2 + 5n + 25)
Edges 750 930 1170 1470 1830 2250 2730 30(n2 + 5n + 25)
Hexagons 240 300 380 480 600 740 900 10(n2 + 5n + 24)
Index G(6,0) G(6,1) G(6,2) G(6,3) G(6,4) G(6,5) G(6,6) G(6,n)
Image Conway polyhedron tkt5daD.png
Conway notation tkt5daD=ctkD[27]
Vertices 720 860 1040 1260 1520 1820 2160 20(n2 + 6n + 36)
Edges 1080 1290 1560 1890 2280 2730 3240 30(n2 + 6n + 36)
Hexagons 350 420 510 620 750 900 1070 10(n2 + 6n + 35)

See also

Notes

References

External links