Hertha Marks Ayrton

From Infogalactic: the planetary knowledge core
(Redirected from Hertha Ayrton)
Jump to: navigation, search
Hertha Marks Ayrton
File:Ayrton Hertha bw painting.jpg
Hertha Ayrton
Born Phoebe Sarah Marks
(1854-04-28)28 April 1854
Portsea, Portsmouth, Hampshire, UK
Died Script error: The function "death_date_and_age" does not exist.
Bexhill-on-sea, Sussex, UK
Education Girton College, Cambridge
Awards Hughes Medal (1906)

Phoebe Sarah Hertha Ayrton (28 April 1854 – 23 August 1923) was an English engineer, mathematician, physicist, and inventor. She was awarded the Hughes Medal by the Royal Society for her work on electric arcs and ripples in sand and water.

Early life and education

Hertha Ayrton was born Phoebe Sarah Marks at 6 Queen Street, Portsea, Hampshire, England on 28 April 1854. She was the daughter of a seamstress. At the age of nine, Sarah was invited by her aunts, who ran a school in north-west London, to live with her cousins and be educated with them.[1] She was known to her peers and teachers as a fiery, occasionally crude personality.[2] Through her cousins she was introduced to science and mathematics and by the time she was sixteen she was working as a governess. She attended Girton College, Cambridge where she studied mathematics and was coached by Richard Glazebrook. She was supported in her application by George Eliot who was working on Daniel Deronda. One of the characters, Mirah, was said to be based on Ayrton, but this is not accepted as fact.[3] During her time at Cambridge, Ayrton constructed a sphygmomanometer, led the choral society, founded the Girton fire brigade, and with Charlotte Scott, Girton's first wrangler, formed a mathematical club.[1] In 1880, Ayrton passed the Mathematical Tripos but was not granted a degree because, at this time, Cambridge gave only certificates and not degrees to women. She successfully completed an external examination and received a B.Sc. degree from the University of London in 1881.[4]

Mathematics and electrical engineering work

Upon her return to London, Ayrton earned money by teaching and embroidery, ran a club for working girls, and cared for her invalid sister.[1] She also put her mathematical skills to practical use – she taught at Notting Hill and Ealing High School, and was also active in devising and solving mathematical problems, many of which were published in "Mathematical Questions and Their Solutions" from the Educational Times. In 1884 Ayrton patented a line-divider, an engineering drawing instrument for dividing a line into any number of equal parts and for enlarging and reducing figures.[1][5] The line-divider was her first major invention and, while its primary use was likely to be for artists for enlarging and diminishing, it was also useful to architects and engineers. Ayrton's patent application was financially supported by Lady Goldsmid and feminist Barbara Bodichon, who together advanced her enough money to take out patents; the invention was shown at the Exhibition of Women’s Industries and received much press attention. Ayrton honoured Barbara Bodichon by naming her first child, a daughter born in 1886, Barbara Bodichon Ayrton (1886–1950). Ayrton's 1884 patent was the first of many – from 1884 until her death, Hertha registered 26 patents: five on mathematical dividers, 13 on arc lamps and electrodes, the rest on the propulsion of air.

In 1884 Ayrton began attending evening classes on electricity at Finsbury Technical College, delivered by Professor William Edward Ayrton, a pioneer in electrical engineering and physics education and a fellow of the Royal Society. On 6 May 1885 she married her former teacher, and thereafter assisted him with experiments in physics and electricity.[1] Ayrton also began her own investigation into the characteristics of the electric arc.[3]

In the late nineteenth century, electric arc lighting was in wide use for public lighting. The tendency of electric arcs to flicker and hiss was a major problem. In 1895, Hertha Ayrton wrote a series of articles for the Electrician, explaining that these phenomena were the result of oxygen coming into contact with the carbon rods used to create the arc. In 1899, she was the first woman ever to read her own paper before the Institution of Electrical Engineers (IEE).[1] Her paper was entitled "The Hissing of the Electric Arc". Shortly thereafter, Ayrton was elected the first female member of the IEE; the next woman to be admitted to the IEE was in 1958.[1] She petitioned to present a paper before the Royal Society but was not allowed because of her sex and "The Mechanism of the Electric Arc" was read by John Perry in her stead in 1901.[2] Ayrton was also the first woman to win a prize from the institution, the Hughes Medal, awarded to her in 1906 in honour of her research on the motion of ripples in sand and water and her work on the electric arc.[3] By the late nineteenth century, Ayrton's work in the field of electrical engineering was recognised more widely, domestically and internationally. At the International Congress of Women held in London in 1899, Hertha presided over the physical science section. Ayrton also spoke at the International Electrical Congress in Paris in 1900.[6] Her success there led the British Association for the Advancement of Science to allow women to serve on general and sectional committees.

In 1902, Ayrton published The Electric Arc, a summary of her research and work on the electric arc, with origins in her earlier articles from the Electrician published between 1895 and 1896. With this publication, her contribution to the field of electrical engineering began to be cemented. However, initially at least, Ayrton was not well received by the more prestigious and traditional scientific societies such as the Royal Society. In the aftermath of the publication of The Electric Arc, Ayrton was proposed as a Fellow of the Royal Society by renowned electrical engineer John Perry in 1902. Her application was turned down by the Council of the Royal Society, who decreed that married women were not eligible to be Fellows.[7] However, in 1904, she became the first woman to read a paper before the Royal Society when she was allowed to read her paper "The Origin and Growth of Ripple Marks" and this was later published in the Proceedings of the Royal Society.[2][8] In 1906, she was awarded the Royal Society's prestigious Hughes Medal "for her experimental investigations on the electric arc, and also on sand ripples."[8] She was the fifth recipient of this prize, award annually since 1902 in recognition of an original discovery in the physical sciences, particularly electricity and magnetism or their applications, and as of 2013, one of only two woman so honoured.[8]

Later life and research

Ayrton delivered papers on the subject again before the Royal Society in 1908 and 1911; she also presented the results of her research before audiences at the British Association and the Physical Society. Ayrton's interest in vortices in water and air inspired the Ayrton fan, or flapper, used in the trenches in the First World War to dispel poison gas. Ayrton fought for its acceptance and organized its production, over 100,000 being used on the Western Front.[1]

Ayrton helped found the International Federation of University Women in 1919 and the National Union of Scientific Workers in 1920. She died of blood poisoning (resulting from an insect bite) on 26 August 1923 at New Cottage, North Lancing, Sussex.[1]

Personal life and commemoration

Hertha Ayrton was agnostic, In her teens she adopted the name "Hertha" after the eponymous heroine of a Swinburne poem that criticized organized religion.[9]

In 1885, Ayrton married the widower William Edward Ayrton, a physicist and electrical engineer who was supportive of her scientific endeavours. The couple had a daughter, Barbara Ayrton, called "Barbie", who later became a member of parliament for the Labour Party.[2]

Two years after her death in 1923, Ayrton's lifelong friend Ottilie Hancock endowed the Hertha Ayrton Research Fellowship at Girton College.[8] This Fellowship continues today.[10]

A blue plaque unveiled in 2007 commemorates Ayrton at 41 Norfolk Square in Paddington.[11]

In 2009, the Hertha Marks Ayrton Fellowship was inaugurated to mark the 25th anniversary of the founding of the Panasonic Trust. Its purpose is to promote the further education of under-represented groups in the engineering profession by supporting a suitably qualified engineer to study a full-time master's degree course specifically related to sustainable development or some other environmental technology.[12]

In 2010, Ayrton was voted one of the ten most influential British women in the history of science, as selected by panel of female Fellows of the Royal Society and science historians.[13]

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Lua error in package.lua at line 80: module 'strict' not found. (Subscription or UK public library membership required.)
  2. 2.0 2.1 2.2 2.3 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 8.2 8.3 Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Reminiscences of Hertha Ayrton by A. P. Trotter in CWP at UCLA
  • Lua error in package.lua at line 80: module 'strict' not found.

External links