Isotopes of oxygen

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found.

Late in a massive star's life, 16O concentrates in the O-shell, 17O in the H-shell and 18O in the He-shell

There are three stable isotopes of oxygen (16O, 17O, and 18O). Radioactive isotopes with mass numbers from 12O to 24O have also been characterized, all short-lived, with the longest-lived being 15O with a half-life of 122.24 seconds. The shortest-lived is 12O with a half-life of 580(30)×10−24 second.

Stable isotopes

Naturally occurring oxygen is composed of three stable isotopes, 16O, 17O, and 18O, with 16O being the most abundant (99.762% natural abundance); thus oxygen (O) has a relative atomic mass of 15.9994(3). Known oxygen isotopes range in mass number from 12 to 24.

The relative and absolute abundance of 16O is high because it is a principal product of stellar evolution and because it is a primary isotope, meaning it can be made by stars that were initially made exclusively of hydrogen.[1] Most 16O is synthesized at the end of the helium fusion process in stars; the triple-alpha reaction creates 12C, which captures an additional 4He to make 16O. The neon burning process creates additional 16O.[1]

Both 17O and 18O are secondary isotopes, meaning that their nucleosynthesis requires seed nuclei. 17O is primarily made by the burning of hydrogen into helium during the CNO cycle, making it a common isotope in the hydrogen burning zones of stars.[1] Most 18O is produced when 14N (made abundant from CNO burning) captures a 4He nucleus, making 18O common in the helium-rich zones of stars.[1] Approximately a billion degrees Celsius is required for two oxygen nuclei to undergo nuclear fusion to form the heavier nucleus of sulfur.[2]

Measurements of the ratio of oxygen-18 to oxygen-16 are often used to interpret changes in paleoclimate. The isotopic composition of oxygen atoms in the Earth's atmosphere is 99.759% 16O, 0.037% 17O and 0.204% 18O.[3] Because water molecules containing the lighter isotope are slightly more likely to evaporate and fall as precipitation,[4] fresh water and polar ice on earth contains slightly less (0.1981%) of the heavy isotope 18O than air (0.204%) or seawater (0.1995%). This disparity allows analysis of temperature patterns via historic ice cores.

An atomic mass of 16 was assigned to oxygen prior to the definition of the unified atomic mass unit based upon 12C.[5] Since physicists referred to 16O only, while chemists meant the naturally-abundant mixture of isotopes, this led to slightly different mass scales between the two disciplines.

Radioisotopes

Fourteen radioisotopes have been characterized, with the most stable being 15O with a half-life of 122.24 s and 14O with a half-life of 70.606 s.[6] All of the remaining radioactive isotopes have half-lives that are less than 27 s and the majority of these have half-lives that are less than 83 milliseconds (ms).[6] For example, 24O has a half-life of 61 ms.[7] The most common decay mode for isotopes lighter than the stable isotopes is β+ decay (to nitrogen)[8][9][10] and the most common mode after is β decay (to fluorine).

Oxygen-13

Oxygen-13 is an unstable isotope of oxygen. It consists of 8 protons and electrons, and 5 neutrons. It has a spin of 3/2-, and a half-life of 8.58 ms. Its atomic mass is 13.0248 Da. It decays to nitrogen-13 by electron capture, and has a decay energy of 17.765 MeV.[11] Its parent nuclide is fluorine-14.[12]

Oxygen-15

Oxygen-15 is an isotope of oxygen, frequently used in positron emission tomography, or PET imaging. It has 8 protons, 7 neutrons, and 8 electrons. The total atomic mass is 15.0030654 amu. It has a half-life of 122.24 seconds.[13] Oxygen-15 is synthesized through deuteron bombardment of nitrogen-14 using a cyclotron.[14]

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay mode(s)[15] daughter
isotope(s)[n 1]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
12O 8 4 12.034405(20) 580(30)×10−24 s
[0.40(25) MeV]
2p (60.0%) 10C 0+
p (40.0%) 11N
13O 8 5 13.024812(10) 8.58(5) ms β+ (89.1%) 13N (3/2−)
β+, p (10.9%) 12C
14O 8 6 14.00859625(12) 70.598(18) s β+ 14N 0+
15O 8 7 15.0030656(5) 122.24(16) s β+ 15N 1/2−
16O[n 2] 8 8 15.99491461956(16) Stable 0+ 0.99757(16) 0.99738–0.99776
17O[n 3] 8 9 16.99913170(12) Stable 5/2+ 3.8(1)×10−4 3.7×10−4–4.0×10−4
18O[n 2][n 4] 8 10 17.9991610(7) Stable 0+ 2.05(14)×10−3 1.88×10−3–2.22×10−3
19O 8 11 19.003580(3) 26.464(9) s β 19F 5/2+
20O 8 12 20.0040767(12) 13.51(5) s β 20F 0+
21O 8 13 21.008656(13) 3.42(10) s β 21F (1/2,3/2,5/2)+
22O 8 14 22.00997(6) 2.25(15) s β (78.0%) 22F 0+
β, n (22.0%) 21F
23O 8 15 23.01569(13) 82(37) ms β, n (57.99%) 22F 1/2+#
β (42.0%) 23F
24O 8 16 24.02047(25) 65(5) ms β, n (57.99%) 23F 0+
β (42.01%) 24F
  1. Bold for stable isotopes
  2. 2.0 2.1 The ratio between 16O and 18O is used to deduce ancient temperatures
  3. Can be used in NMR studies of metabolic pathways
  4. Can be used in studying certain metabolic pathways

Oxygen isotopes with 25–28 nucleons exist for less than 1 microsecond, since they are beyond the neutron drip line.[16]

Notes

  • The precision of the isotope abundances and atomic mass is limited through variations. The given ranges should be applicable to any normal terrestrial material.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC, which use expanded uncertainties.
  • Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).
  • Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights.

See also

Notes and references

  1. 1.0 1.1 1.2 1.3 Lua error in package.lua at line 80: module 'strict' not found.
  2. Emsley 2001, p. 297.
  3. Cook 1968, p. 500.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Parks & Mellor 1939, Chapter VI, Section 7.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. [not in citation given][citation needed] Lua error in package.lua at line 80: module 'strict' not found.

References

For the table
  • Isotope masses from the area:
    • Lua error in package.lua at line 80: module 'strict' not found.
  • Isotopic compositions and standard atomic masses from:
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
    • Lua error in package.lua at line 80: module 'strict' not found.
For the prose
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.


Isotopes of nitrogen Isotopes of oxygen Isotopes of fluorine
Table of nuclides