Majorana fermion

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Ettore Majorana hypothesised the existence of Majorana fermions in 1937

A Majorana fermion (/məˈrɒnə ˈfɛərmɒn/[1]), also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesized by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

All of the Standard Model fermions except the neutrino behave as Dirac fermions at low energy (after electroweak symmetry breaking), but the (massive) nature of the neutrino is not settled and it may be either Dirac or Majorana. In condensed matter physics, Majorana fermions exist as quasiparticle excitations in superconductors and can be used to form Majorana bound states governed by non-abelian statistics.

Theory

The concept goes back to Majorana's suggestion in 1937[2] that neutral spin-1/2 particles can be described by a real wave equation (the Majorana equation), and would therefore be identical to their antiparticle (because the wave functions of particle and antiparticle are related by complex conjugation).

The difference between Majorana fermions and Dirac fermions can be expressed mathematically in terms of the creation and annihilation operators of second quantization. The creation operator \gamma^{\dagger}_j creates a fermion in quantum state j (described by a real wave function), whereas the annihilation operator \gamma_j annihilates it (or, equivalently, creates the corresponding antiparticle). For a Dirac fermion the operators \gamma^{\dagger}_j and \gamma_j are distinct, whereas for a Majorana fermion they are identical. The ordinary fermionic annihilation and creation operators f and f^{\dagger} can be written in terms of two Majorana operators \gamma_1 and \gamma_2 by f=(\gamma_1+i\gamma_2)/\sqrt{2}, f^{\dagger}=(\gamma_1-i\gamma_2)/\sqrt{2}.

In supersymmetry models, neutralinos--superpartners of gauge bosons and Higgs bosons--are Majorana.

Elementary particle

Because particles and antiparticles have opposite conserved charges, in order to be a Majorana fermion, namely, it is its own antiparticle, it is necessarily uncharged. All of the elementary fermions of the Standard Model have gauge charges, so they cannot have fundamental Majorana masses. However, the right-handed sterile neutrinos introduced to explain neutrino oscillation could have Majorana masses. If they do, then at low energy (after electroweak symmetry breaking), by the seesaw mechanism, the neutrino fields would naturally behave as six Majorana fields, with three expected to have very high masses (comparable to the GUT scale) and the other three expected to have very low masses (comparable to 1 eV). If right-handed neutrinos exist but do not have a Majorana mass, the neutrinos would instead behave as three Dirac fermions and their antiparticles with masses coming directly from the Higgs interaction, like the other Standard Model fermions.

The seesaw mechanism is appealing because it would naturally explain why the observed neutrino masses are so small. However, if the neutrinos are Majorana then they violate the conservation of lepton number and even B − L.

Neutrinoless double beta decay, which can be viewed as two beta decay events with the produced antineutrinos immediately annihilating with one another, is only possible if neutrinos are their own antiparticles.[3] Experiments are underway to search for this type of decay.[4]

The high-energy analog of the neutrinoless double beta decay process is the production of same sign charged lepton pairs at hadron colliders;[5] it is being searched for by both the ATLAS and CMS experiments at the Large Hadron Collider. In theories based on left–right symmetry, there is a deep connection between these processes.[6] In the most accepted explanation of the smallness of neutrino mass, the seesaw mechanism, the neutrino is naturally a Majorana fermion.

Majorana fermions cannot possess intrinsic electric or magnetic moments, only toroidal moments.[7][8][9] Such minimal interaction with electromagnetic fields makes them potential candidates for cold dark matter.[10][11]

Majorana bound states

In superconducting materials, Majorana fermions can emerge as (non-fundamental) quasiparticles (which are more commonly referred as Bogoliubov quasiparticles in condensed matter.). This becomes possible because a quasiparticle in a superconductor is its own antiparticle. Majorana fermions (i.e. the Bogoliubov quasiparticles) in superconductors were observed by many experiments many years ago.

Mathematically, the superconductor imposes electron hole "symmetry" on the quasiparticle excitations, relating the creation operator \gamma(E) at energy E to the annihilation operator {\gamma^{\dagger}(-E)} at energy -E. Majorana fermions can be bound to a defect at zero energy, and then the combined objects are called Majorana bound states or Majorana zero modes.[12] This name is more appropriate than Majorana fermion (although the distinction is not always made in the literature), because the statistics of these objects is no longer fermionic. Instead, the Majorana bound states are an example of non-abelian anyons: interchanging them changes the state of the system in a way that depends only on the order in which the exchange was performed. The non-abelian statistics that Majorana bound states possess allows them to be used as a building block for a topological quantum computer.[13]

A quantum vortex in certain superconductors or superfluids can trap midgap states, so this is one source of Majorana bound states.[14][15][16] Shockley states at the end points of superconducting wires or line defects are an alternative, purely electrical, source.[17] An altogether different source uses the fractional quantum Hall effect as a substitute for the superconductor.[18]

Experiments in superconductivity

In 2008, Fu and Kane provided a groundbreaking development by theoretically predicting that Majorana bound states can appear at the interface between topological insulators and superconductors.[19][20] Many proposals of a similar spirit soon followed, where it was shown that Majorana bound states can appear even without any topological insulator. An intense search to provide experimental evidence of Majorana bound states in superconductors[21][22] first produced some positive results in 2012.[23][24] A team from the Kavli Institute of Nanoscience at Delft University of Technology in the Netherlands reported an experiment involving indium antimonide nanowires connected to a circuit with a gold contact at one end and a slice of superconductor at the other. When exposed to a moderately strong magnetic field the apparatus showed a peak electrical conductance at zero voltage that is consistent with the formation of a pair of Majorana bound states, one at either end of the region of the nanowire in contact with the superconductor.[25] This type of bounded state with zero energy was soon detected by several other groups in similar hybrid devices.[26][27][28][29]

This experiment from Delft marks a possible verification of independent 2010 theoretical proposals from two groups[30][31] predicting the solid state manifestation of Majorana bound states in semiconducting wires. However, it was also pointed out that some other trivial non-topological bounded states[32] could highly mimic the zero voltage conductance peak of Majorana bound state.

In 2014, evidence of Majorana bound states was observed using a low-temperature scanning tunneling microscope, by scientists at Princeton University.[33][34] It was suggested that Majorana bound states appeared at the edges of a chain of iron atoms formed on the surface of superconducting lead. Physicist Jason Alicea of California Institute of Technology, not involved in the research, said the study offered "compelling evidence" for Majorana fermions but that "we should keep in mind possible alternative explanations—even if there are no immediately obvious candidates".[35]

References

  1. "Quantum Computation possible with Majorana Fermions" on YouTube, uploaded 19 April 2013, retrieved 5 October 2014; and also based on the physicist's name's pronunciation.
  2. Majorana, Ettore; Maiani, Luciano (2006). "A symmetric theory of electrons and positrons". In Bassani, Giuseppe Franco (ed.). Ettore Majorana Scientific Papers. pp. 201–33. doi:10.1007/978-3-540-48095-2_10. ISBN 978-3-540-48091-4.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles> Translated from: Majorana, Ettore (1937). "Teoria simmetrica dell'elettrone e del positrone". Il Nuovo Cimento (in Italian). 14 (4): 171–84. doi:10.1007/bf02961314.CS1 maint: unrecognized language (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Schechter, J.; Valle, J.W.F. (1982). "Neutrinoless Double beta Decay in SU(2) x U(1) Theories". Physical Review D. 25 (11): 2951. Bibcode:1982PhRvD..25.2951S. doi:10.1103/PhysRevD.25.2951. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. Rodejohann, Werner (2011). "Neutrino-less Double Beta Decay and Particle Physics". International Journal of Modern Physics. E20 (9): 1833. arXiv:1106.1334. Bibcode:2011IJMPE..20.1833R. doi:10.1142/S0218301311020186. Unknown parameter |registration= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. Keung, Wai-Yee; Senjanović, Goran (1983). "Majorana Neutrinos and the Production of the Right-Handed Charged Gauge Boson". Physical Review Letters. 50 (19): 1427. Bibcode:1983PhRvL..50.1427K. doi:10.1103/PhysRevLett.50.1427. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. Tello, Vladimir; Nemevšek, Miha; Nesti, Fabrizio; Senjanović, Goran; Vissani, Francesco (2011). "Left-Right Symmetry: from LHC to Neutrinoless Double Beta Decay". Physical Review Letters. 106 (15): 151801. arXiv:1011.3522. Bibcode:2011PhRvL.106o1801T. doi:10.1103/PhysRevLett.106.151801. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Kayser, Boris; Goldhaber, Alfred S. (1983). "CPT and CP properties of Majorana particles, and the consequences". Physical Review D. 28 (9): 2341–2344. Bibcode:1983PhRvD..28.2341K. doi:10.1103/PhysRevD.28.2341. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Radescu, E. E. (1985). "On the electromagnetic properties of Majorana fermions". Physical Review D. 32 (5): 1266–1268. Bibcode:1985PhRvD..32.1266R. doi:10.1103/PhysRevD.32.1266. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. Boudjema, F.; Hamzaoui, C.; Rahal, V.; Ren, H. C. (1989). "Electromagnetic Properties of Generalized Majorana Particles". Physical Review Letters. 62 (8): 852–854. Bibcode:1989PhRvL..62..852B. doi:10.1103/PhysRevLett.62.852. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Pospelov, Maxim; ter Veldhuis, Tonnis (2000). "Direct and indirect limits on the electro-magnetic form factors of WIMPs". Physics Letters B. 480: 181–186. arXiv:hep-ph/0003010. Bibcode:2000PhLB..480..181P. doi:10.1016/S0370-2693(00)00358-0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Ho, Chiu Man; Scherrer, Robert J. (2013). "Anapole Dark Matter". Physics Letters B. 722 (8): 341–346. arXiv:1211.0503. Bibcode:2013PhLB..722..341H. doi:10.1016/j.physletb.2013.04.039.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  12. Wilczek, Frank (2009). "Majorana returns" (PDF). Nature Physics. 5 (9): 614–618. Bibcode:2009NatPh...5..614W. doi:10.1038/nphys1380.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Nayak, Chetan; Simon, Steven H.; Stern, Ady; Freedman, Michael; Das Sarma, Sankar (2008). "Non-Abelian anyons and topological quantum computation". Reviews of Modern Physics. 80 (3): 1083. arXiv:0707.1889. Bibcode:2008RvMP...80.1083N. doi:10.1103/RevModPhys.80.1083.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. N.B. Kopnin; M.M. Salomaa (1991). "Mutual friction in superfluid 3He: Effects of bound states in the vortex core". Physical Review B. 44 (17): 9667. Bibcode:1991PhRvB..44.9667K. doi:10.1103/PhysRevB.44.9667.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. Volovik, G. E. (1999). "Fermion zero modes on vortices in chiral superconductors". JETP Letters. 70 (9): 609–614. arXiv:cond-mat/9909426. Bibcode:1999JETPL..70..609V. doi:10.1134/1.568223.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Read, N.; Green, Dmitry (2000). "Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect". Physical Review B. 61 (15): 10267. arXiv:cond-mat/9906453. Bibcode:2000PhRvB..6110267R. doi:10.1103/PhysRevB.61.10267.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. Kitaev, A. Yu (2001). "Unpaired Majorana fermions in quantum wires". Physics-Uspekhi (supplement). 44 (131): 131. arXiv:cond-mat/0010440. Bibcode:2001PhyU...44..131K. doi:10.1070/1063-7869/44/10S/S29.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. Moore, Gregory; Read, Nicholas (August 1991). "Nonabelions in the fractional quantum Hall effect". Nuclear Physics B. 360 (2–3): 362. Bibcode:1991NuPhB.360..362M. doi:10.1016/0550-3213(91)90407-O.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. Fu, Liang; Kane, Charles L. (2008). "Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator". Physical Review Letters. 10 (9): 096407. arXiv:0707.1692. Bibcode:2008PhRvL.100i6407F. doi:10.1103/PhysRevLett.100.096407.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. Fu, Liang; Kane, Charles L. (2009). "Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction". Physical Review B. 79 (16): 161408. arXiv:0804.4469. Bibcode:2009PhRvB..79p1408F. doi:10.1103/PhysRevB.79.161408. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Alicea, Jason (2012). "New directions in the pursuit of Majorana fermions in solid state systems". Reports on Progress in Physics. 75 (7): 076501. arXiv:1202.1293. Bibcode:2012RPPh...75g6501A. doi:10.1088/0034-4885/75/7/076501. PMID 22790778. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  22. Beenakker, C. W. J. (April 2013). "Search for Majorana fermions in superconductors". Annual Review of Condensed Matter Physics. 4 (113): 113–136. arXiv:1112.1950. Bibcode:2013ARCMP...4..113B. doi:10.1146/annurev-conmatphys-030212-184337. Unknown parameter |subscription= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  23. Reich, Eugenie Samuel (28 February 2012). "Quest for quirky quantum particles may have struck gold". Nature News. doi:10.1038/nature.2012.10124.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. Amos, Jonathan (13 April 2012). "Majorana particle glimpsed in lab". BBC News. Retrieved 15 April 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  25. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. (12 April 2012). "Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices". Science. 336 (6084): 1003–1007. arXiv:1204.2792. Bibcode:2012Sci...336.1003M. doi:10.1126/science.1222360.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  26. Deng, M.T.; Yu, C.L.; Huang, G.Y.; Larsson, M.; Caroff, P.; Xu, H.Q. (28 November 2012). "Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device". Nano Letters. 12 (12): 6414–6419. Bibcode:2012NanoL..12.6414D. doi:10.1021/nl303758w.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. Das, A.; Ronen, Y.; Most, Y.; Oreg, Y.; Heiblum, M.; Shtrikman, H. (11 November 2012). "Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions". Nature Physics. 8 (12): 887–895. arXiv:1205.7073. Bibcode:2012NatPh...8..887D. doi:10.1038/nphys2479.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Churchill, H. O. H.; Fatemi, V.; Grove-Rasmussen, K.; Deng, M.T.; Caroff, P.; Xu, H.Q.; Marcus, C.M. (6 June 2013). "Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover". PHYSICAL REVIEW B. 87 (24): 241401(R). arXiv:1303.2407. Bibcode:2013PhRvB..87x1401C. doi:10.1103/PhysRevB.87.241401.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  29. Deng, M.T.; Yu, C.L.; Huang, G.Y.; Larsson, Marcus; Caroff, P.; Xu, H.Q. (11 November 2014). "Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device". Scientific Reports. 4: 7261. arXiv:1406.4435. Bibcode:2014NatSR...4E7261D. doi:10.1038/srep07261.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  30. Lutchyn, Roman M.; Sau, Jay D.; Das Sarma, S. (August 2010). "Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures". Physical Review Letters. 105 (7): 077001. arXiv:1002.4033. Bibcode:2010PhRvL.105g7001L. doi:10.1103/PhysRevLett.105.077001.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. Oreg, Yuval; Refael, Gil; von Oppen, Felix (October 2010). "Helical Liquids and Majorana Bound States in Quantum Wires". Physical Review Letters. 105 (17): 177002. arXiv:1003.1145. Bibcode:2010PhRvL.105q7002O. doi:10.1103/PhysRevLett.105.177002.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. Lee, E. J. H.; Jiang, X.; Houzet, M.; Aguado, R.; Lieber, C.M.; Franceschi, S.D. (15 December 2013). "Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures". Nature Nanotechnology. 9: 79–84. arXiv:1302.2611. Bibcode:2014NatNa...9...79L. doi:10.1038/nnano.2013.267.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. Nadj-Perge, Stevan; Drozdov, Ilya K.; Li, Jian; Chen, Hua; Jeon, Sangjun; Seo, Jungpil; MacDonald, Allan H.; Bernevig, B. Andrei; Yazdani, Ali (2 October 2014). "Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor". Science. arXiv:1410.3453. Bibcode:2014Sci...346..602N. doi:10.1126/science.1259327. Unknown parameter |subscription= ignored (help); Italic or bold markup not allowed in: |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  34. "Majorana fermion: Physicists observe elusive particle that is its own antiparticle". Phys.org. October 2, 2014. Retrieved 3 October 2014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. "New Particle Is Both Matter and Antimatter". Scientific American. October 2, 2014. Retrieved 3 October 2014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

Further reading