Markov additive process
In applied probability, a Markov additive process (MAP) is a bivariate Markov process where the future states depends only on one of the variables.^{[1]}
Contents
Definition
Finite or countable state space for J(t)
The process {(X(t),J(t)) : t ≥ 0} is a Markov additive process with continuous time parameter t if^{[1]}
 {(X(t),J(t)) : t ≥ 0} is a Markov process
 the conditional distribution of (X(t + s) − X(t),J(s + t)) given (X(t),J(t)) depends only on J(t).
The state space of the process is R × S where X(t) takes real values and J(t) takes values in some countable set S.
General state space for J(t)
For the case where J(t) takes a more general state space the evolution of X(t) is governed by J(t) in the sense that for any f and g we require^{[2]}

 .
Example
A fluid queue is a Markov additive process where J(t) is a continuoustime Markov chain.
Applications
Çinlar uses the unique structure of the MAP to prove that, given a gamma process with a shape parameter that is a function of Brownian motion, the resulting lifetime is distributed according to the Weibull distribution.
Kharoufeh presents a compact transform expression for the failure distribution for wear processes of a component degrading according to a Markovian environment inducing statedependent continuous linear wear by using the properties of a MAP and assuming the wear process to be temporally homogeneous and that the environmental process has a finite state space.
Notes
 ↑ ^{1.0} ^{1.1} Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
 ↑ Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
This probabilityrelated article is a stub. You can help Infogalactic by expanding it. 