Photomorphogenesis

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In developmental biology, photomorphogenesis is light-mediated development, where plant growth is altered in response to light signals. This is distinct from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.[1] The photomorphogenesis of plants is often studied by using tightly frequency-controlled light sources to grow the plants.

History

Theophrastus of Eresus (371 to 287 BC) may have been the first to write about photomorphogenesis. He described the different wood qualities of fir trees grown in different levels of light, likely the result of the photomorphogenic "shade avoidance effect." In 1686, John Ray wrote "Historia Plantarum" which mentioned the effects of etiolation. Charles Bonnet introduced the term "etiolement" to the scientific literature in 1754 when describing his experiments, commenting that the term was already in use by gardeners.[2]

Germination

Light has profound effects on the development of plants. The most striking effects of light are observed when a germinating seedling emerges from the soil and is exposed to light for the first time.

Normally the seedling radicle (root) emerges first from the seed, and the shoot appears as the root becomes established. Later, with growth of the shoot (particularly when it emerges into the light) there is increased secondary root formation and branching. In this coordinated progression of developmental responses are early manifestations of correlative growth phenomena where the root affects the growth of the shoot and vice versa. To a large degree, the growth responses are hormone mediated.

In the absence of light, plants develop an etiolated growth pattern. Etiolation of the seedling causes it to become elongated, which may facilitate it emerging from the soil.

Comparison of dark-grown (etiolated) and light-grown (de-etiolated) seedlings

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

A dicot seedling emerging from the ground displays an apical hook (in the hypocotyl in this case), a response to dark conditions

Etiolated characteristics:

  • No leaf growth
  • Rapid stem elongation
  • Limited radial expansion of stem
  • Limited root elongation
  • Limited production of lateral roots

De-etiolated characteristics:

  • Leaf growth promoted
  • Stem elongation suppressed
  • Radial expansion of stem
  • Root elongation promoted
  • Lateral root development accelerated

The developmental changes characteristic of photomorphogenesis shown by de-etiolated seedlings, are induced by light. Typically, plants are responsive to wavelengths of light in the blue, red and far-red regions of the spectrum through the action of several different photosensory systems. The photoreceptors for red and far-red wavelengths are known as phytochromes. There are at least 5 members of the phytochrome family of photoreceptors. There are several blue light photoreceptors.

Red/far-red systems in plants

Plants use phytochrome to detect and respond to red and far-red wavelengths. Phytochrome is the only known photoreceptor that absorbs light in the red/far red spectrum of light (600-750nm) specifically and only for photosensory purposes.[1]

Phytochromes are proteins with a light absorbing pigment attached (chromophore).

The chromophore is a linear tetrapyrrole called phytochromobilin.

The phytochrome apoprotein is synthesized in the Pr form. Upon binding the chromophore, the holoprotein becomes sensitive to light. If it absorbs red light it will change conformation to the biologically active Pfr form. The Pfr form can absorb far red light and switch back to the Pr form.

Most plants have multiple phytochromes encoded by different genes. The different forms of phytochrome control different responses but there is also a lot of redundancy so that in the absence of one phytochrome, another may take on the missing functions.

Arabidopsis has 5 phytochromes - PHYA, PHYB, PHYC, PHYD, PHYE

Molecular analyses of phytochrome and phytochrome-like genes in higher plants (ferns, mosses, algae) and photosynthetic bacteria have shown that phytochromes evolved from prokaryotic photoreceptors that predated the origin of plants.

Blue light systems

As for the blue light system, plants contain multiple blue light photoreceptors which have different functions.

Based on studies with action spectra, mutants and molecular analyses, it has been determined that higher plants contain at least 4, and probably 5, different blue light photoreceptors.

Cryptochromes were the first blue light receptors to be isolated and characterized from any organism. The proteins use a flavin as a chromophore. The cryptochromes have evolved from microbial DNA-photolyase, an enzyme that carries out light-dependent repair of UV damaged DNA.

Two cryptochromes have been identified in plants.

Cryptochromes control stem elongation, leaf expansion, circadian rhythms and flowering time.

In addition to blue light, cryptochromes also perceive long wavelength UV irradiation (UV-A).

Phototropin is the blue light photoreceptor that controls phototropism. It also uses flavin as chromophore. Only one phototropin has been identified so far (NPH1). Phototropin also perceives long wavelength UV irradiation (UV-A) in addition to blue light.

Recent experiments indicate that a 4th blue light receptor exists that uses a carotenoid as a chromophore. This new photoreceptor controls blue light induction of stomatal opening. However, the gene and protein have not yet been found.

Other blue light responses exist that seem to function in plants that are missing the cryptochrome, phototropin and carotenoid photoreceptors suggesting that at least one more will be found.

Since the cryptochromes were discovered in plants, several labs have identified homologous genes and photoreceptors in a number of other organisms, including humans, mice and flies. It appears that in mammals and flies, the cryptochromes function in entrainment of the biological clock. Indeed, in flies, a cryptochrome may be a functional part of the clock mechanism.

UV systems

Plants show various responses to UV light. UVR8 has been shown to be a UV-B receptor.

References

  1. 1.0 1.1 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.

External links