Portal:Energy

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
The Energy Portal
Crystal energy.svg

Welcome to Wikipedia's energy portal, your gateway to the subject of energy and its effects on the world around us. This portal is aimed at educating you about energy and all its uses.

Template:/TabBar

Page contents: IntroductionEnergy newsSelected articleSelected pictureSelected biographyDid you know?QuotationsRelated portalsWikiprojectsAssociated WikimediaHelp

Template:/box-header

Susquehanna steam electric station.jpg

Energy is a property of objects and systems of objects to act against a force (to do work), explored in branches of physics such as thermodynamics. Popularly the term is most often used in the context of energy as a public technology: energy resources, their consumption, development, depletion, and conservation. Biologically, bodies rely on food for energy in the same sense as industry relies on fuels to continue functioning. Since economic activities such as manufacturing and transportation can be energy intensive, energy efficiency, energy dependence, energy security and price are key concerns. Increased awareness of the effects of global warming has led to global debate and action for the reduction of greenhouse gases emissions; like many previous energy use patterns, it is changing not due to depletion or supply constraints but due to problems with waste, extraction, or geopolitical scenarios.

First, somehow there is a movement. There happened to be a burst of motion first. Motion implies and embraces energy, includes energy in itself. That first movement is a systematic one. The energy is the “ability of that system to perform work.” After that first movement we have the energy to play with. The universe is the result of the work systematically performed by that burst of motion. Motion can be transferred, transformed and converted into different forms. Whenever we see or sense a work done that means a visible energy. From here on radiation of energy, electromagnetic radiation and so on is easy to follow.

In the context of natural science, energy can take several different forms: thermal, chemical, electrical, radiant, nuclear, etc. These are often grouped as being either kinetic energy or potential energy. Many of these forms can be readily transformed into another with the help of a device - from chemical energy to electrical energy using a battery, for example. Most energy available for human use ultimately comes from the sun, which generates it with nuclear fusion. The enormous potential for fusion and other basic nuclear reactions is expressed by the equation E = mc2.

The concepts of energy and its transformations are useful in explaining natural processes on larger scales: Meteorological phenomena like wind, rain, lightning and tornadoes all result from energy transformations brought about by solar energy on the planet. Life itself is critically dependent on biological energy transformations; organic chemical bonds are constantly broken and made to make the exchange and transformation of energy possible. Read more... Template:/box-footer


edit  watch  

Selected article

The 1973 oil crisis began in earnest on October 17, 1973, when the members of Organization of Arab Petroleum Exporting Countries announced, as a result of the ongoing Yom Kippur War, that they would no longer ship petroleum to nations that had supported Israel in its conflict with Syria and Egypt (i.e., to the United States and its allies in Western Europe).

At about the same time, OPEC members agreed to use their leverage over the world price-setting mechanism for oil in order to quadruple world oil prices, after attempts at negotiation failed. Due to the dependence of the industrialized world on OPEC oil, these price increases were dramatically inflationary to the economies of the targeted countries, while at the same time suppressive of economic activity.

This increase in the price of oil had a dramatic effect on oil exporting nations, for the countries of the Middle East who had long been dominated by the industrial powers were seen to have acquired control of a vital commodity. The traditional flow of capital reversed as the oil exporting nations accumulated vast wealth. Meanwhile, the shock produced chaos in the West, and shares on the New York Stock Exchange lost $97 billion in value in six weeks. Read more...


edit  watch  

Selected picture

Sunspot TRACE.jpeg

Photo credit: NASA/TRACE
Plasma being channeled by the magnetic field loops of a sunspot.


edit  watch  

Did you know?

Compact-Fluorescent-Bulb.jpg
  • Positive lightning bolts are typically six to ten times more powerful than normal lightning — and aircraft are not designed to withstand them?
  • Dark energy is a hypothetical form of energy which permeates all of space?

edit  watch  

Selected biography

{{{caption}}}
Michael Faraday (17911867), an English chemist and physicist, is credited with the discovery of electromagnetic induction, which formed the basis for exploiting electricity as a practical form of energy. His discovery paved the way for the development of generators, induction motors, transformers, and most other electrical machines.

In 1831, Faraday began his great series of experiments in which he discovered electromagnetic induction. He established that a changing magnetic field produces an electric field, a relation mathematically modelled by Faraday's law. Faraday later used the principle to construct the electric dynamo, the ancestor of modern power generators. He went on to investigate the fundamental nature of electricity, concluding in 1839 that, contrary to opinions at the time, only a single "electricity" exists, and the changing values of quantity and intensity (voltage and charge) would produce different groups of phenomena.

Some historians refer to Faraday as the best experimentalist in the history of science. Despite this his mathematical ability did not extend so far as trigonometry or any but the simplest algebra. He nevertheless possessed the ability to present his ideas in clear and simple language. During his lifetime, Faraday rejected a knighthood and twice refused to become President of the Royal Society. Read more...


Template:/box-header


Wikinews on energy
Renewable energy news


Template:/box-footer

edit  watch  

Quotations


Template:/box-header

Nuvola apps kcmsystem.svg
Radioactive.svg
Technology Nuclear technology Thorium
Speed1c.png
Earth Day Flag.png
Terra.png
Engineering Ecology Earth sciences
BlackHole.jpg
Nuvola apps ksysv.png
Infrastructure
Physics Transport Infrastructure
Crystal kchart.png
Sustainable development.svg
Micon-Turbine.JPG
Business & Economics Sustainable development Renewable energy
Sustainable development.svg
Chemistry

Template:/box-footer

Template:/box-header

WikiProjects connected with energy:


Other WikiProjects that may be of interest:

Template:/box-footer

Template:/box-header

Torchlight help icon.svg

Puzzled by energy?
Can't answer your question?
Don't understand the answer?


For further ideas, to leave a comment, or to learn how you can help improve and update this portal, see the talk page. Template:/box-footer

Template:/box-header

The following Wikimedia sister projects provide more on this subject:
Wikibooks  Wikimedia Commons Wikinews  Wikiquote  Wikisource  Wikiversity  Wikivoyage  Wiktionary  Wikidata 
Books Media News Quotations Texts Learning resources Travel guides Definitions Database

Template:/box-footer

ml:കവാടം:ഊര്‍ജ്ജം