Pronic number

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

A pronic number is a number which is the product of two consecutive integers, that is, a number of the form n(n + 1).[1] The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,[2] or rectangular numbers;[3] however, the "rectangular number" name has also been applied to the composite numbers.[4]

The first few pronic numbers are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 … (sequence A002378 in OEIS).

As figurate numbers

The pronic numbers were studied as figurate numbers alongside the triangular numbers and square numbers in Aristotle's Metaphysics,[2] and their discovery has been attributed much earlier to the Pythagoreans.[3] As a kind of figurate number, the pronic numbers are sometimes called oblong[2] because they are analogous to polygonal numbers in this way:[1]

* * * * *
* * *
* * * *
* * * *
* * * *
* * * * *
* * * * *
* * * * *
* * * * *
1×2 2×3 3×4 4×5

The nth pronic number is twice the nth triangular number[1][2] and n more than the nth square number, as given by the alternative formula n2 + n for these numbers. The nth pronic number is also the difference between the odd square (2n + 1)2 and the (n+1)st centered hexagonal number.

Sum of reciprocals

The sum of the reciprocals of the pronic numbers (excluding 0) is a telescoping series that adds to 1:[5]

1 = \frac{1}{2}+\frac{1}{6}+\frac{1}{12}\cdots=\sum_{i=1}^{\infty} \frac{1}{i(i+1)}.

The partial sum of the first n terms in this series is[5]

\sum_{i=1}^{n} \frac{1}{i(i+1)} =\frac{n}{n+1}.

Additional properties

The nth pronic number is the sum of the first n even integers.[2] It follows that all pronic numbers are even, and that 2 is the only prime pronic number. It is also the only pronic number in the Fibonacci sequence and the only pronic Lucas number.[6][7]

The number of off-diagonal entries in a square matrix is always a pronic number.[8]

The fact that consecutive integers are coprime and that a pronic number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a pronic number is present in only one of its factors. Thus a pronic number is squarefree if and only if n and n + 1 are also squarefree. The number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n + 1.

If 25 is appended to the decimal representation of any pronic number, the result is a square number e.g. 625 = 252, 1225 = 352. This is because

(10n+5)^2 = 100n^2 + 100n + 25 = 100n(n+1) + 25\,.

References

  1. 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found..
  2. 2.0 2.1 2.2 2.3 2.4 Lua error in package.lua at line 80: module 'strict' not found..
  3. 3.0 3.1 Lua error in package.lua at line 80: module 'strict' not found..
  4. Lua error in package.lua at line 80: module 'strict' not found..
  5. 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found..
  6. Lua error in package.lua at line 80: module 'strict' not found..
  7. Lua error in package.lua at line 80: module 'strict' not found..
  8. Lua error in package.lua at line 80: module 'strict' not found..