Protein synthesis inhibitor

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Simplified schematic of mRNA translation

A protein synthesis inhibitor is a substance that stops or slows the growth or proliferation of cells by disrupting the processes that lead directly to the generation of new proteins.[1]

While a broad interpretation of this definition could be used to describe nearly any antibiotic, in practice, it usually refers to substances that act at the ribosome level (either the ribosome itself or the translation factor),[2] taking advantages of the major differences between prokaryotic and eukaryotic ribosome structures.

Toxins such as ricin also function via protein synthesis inhibition.[3] Ricin acts at the eukaryotic 60S.[4]

Examples:

Mechanism

In general, protein synthesis inhibitors work at different stages of prokaryotic mRNA translation into proteins, like initiation, elongation (including aminoacyl tRNA entry, proofreading, peptidyl transfer, and ribosomal translocation) and termination:

Earlier stages

Initiation

Aminoacyl tRNA entry

Proofreading

  • Aminoglycosides, among other potential mechanisms of action, interfere with the proofreading process, causing increased rate of error in synthesis with premature termination.[8]

Peptidyl transfer

  • Chloramphenicol blocks the peptidyl transfer step of elongation on the 50S ribosomal subunit in both bacteria and mitochondria.
  • Macrolides (as well as inhibiting ribosomal translocation[9] and other potential mechanisms) bind to the 50s ribosomal subunits, inhibiting peptidyl transfer.
  • Quinupristin/dalfopristin act synergistically, with dalfopristin, enhancing the binding of quinupristin, as well as inhibiting peptidyl transfer.[10] Quinupristin binds to a nearby site on the 50S ribosomal subunit and prevents elongation of the polypeptide,[10] as well as causing incomplete chains to be released.[10]

Ribosomal translocation

Termination

  • Macrolides[12][13] and clindamycin[12][13] (both also having other potential mechanisms) cause premature dissociation of the peptidyl-tRNA from the ribosome.
  • Puromycin has a structure similar to that of the tyrosinyl aminoacyl-tRNA. Thus, it binds to the ribosomal A site and participates in peptide bond formation, producing peptidyl-puromycin. However, it does not engage in translocation and quickly dissociates from the ribosome, causing a premature termination of polypeptide synthesis.
  • Streptogramins also cause premature release of the peptide chain.[14]

Protein synthesis inhibitors of unspecified mechanism

Binding site

The following antibiotics bind to the 30S subunit of the ribosome:

The following antibiotics bind to the 50S ribosomal subunit:

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. 8.0 8.1 Lua error in package.lua at line 80: module 'strict' not found.
  9. 9.0 9.1 Protein synthesis inhibitors: macrolides mechanism of action animation. Classification of agents Pharmamotion. Author: Gary Kaiser. The Community College of Baltimore County. Retrieved on July 31, 2009
  10. 10.0 10.1 10.2 Page 212 in: Title: Hugo and Russell's pharmaceutical microbiology Authors: William Barry Hugo, Stephen P. Denyer, Norman A. Hodges, Sean P. Gorman Edition: 7, illustrated Publisher: Wiley-Blackwell, 2004 ISBN 0-632-06467-6 Length: 481 pages
  11. Wisteria Lane cases --> CLINDAMYCIN University of Michigan. Retrieved on July 31, 2009
  12. 12.0 12.1 Lua error in package.lua at line 80: module 'strict' not found.
  13. 13.0 13.1 Lua error in package.lua at line 80: module 'strict' not found.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Lua error in package.lua at line 80: module 'strict' not found.
  15. 15.0 15.1 Drugbank.ca > Showing drug card for Retapamulin (DB01256) Update Date: 2009-06-23