Pyrazine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Pyrazine
Names
IUPAC name
Pyrazine
Other names
1,4-Diazabenzene, p-Diazine, 1,4-Diazine, Paradiazine, Piazine, UN 1325
Identifiers
290-37-9 YesY
ChEBI CHEBI:30953 YesY
ChEMBL ChEMBL15797 YesY
ChemSpider 8904 YesY
EC Number 206-027-6
Jmol 3D model Interactive image
PubChem 9261
  • InChI=1S/C4H4N2/c1-2-6-4-3-5-1/h1-4H YesY
    Key: KYQCOXFCLRTKLS-UHFFFAOYSA-N YesY
  • InChI=1/C4H4N2/c1-2-6-4-3-5-1/h1-4H
  • c1cnccn1
Properties
C4H4N2
Molar mass 80.09 g/mol
Appearance White crystals
Density 1.031 g/cm3
Melting point 52 °C (126 °F; 325 K)
Boiling point 115 °C (239 °F; 388 K)
Soluble
Acidity (pKa) 0.37[1] (protonated pyrazine)
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Pyrazine is a heterocyclic aromatic organic compound with the chemical formula C4H4N2.

Pyrazine is a symmetrical molecule with point group D2h. Derivatives such as phenazine are well known for their antitumor, antibiotic and diuretic activities. Pyrazine is less basic than pyridine, pyridazine and pyrimidine. Tetramethylpyrazine (also known as ligustrazine) is reported to scavenge superoxide anion and decrease nitric oxide production in human polymorphonuclear leukocytes,[2] and is a component of some herbs in traditional Chinese medicine.[3]

Synthesis

Many methods exist for the organic synthesis of pyrazine and its derivatives. Some of these are among the oldest synthesis reactions still in use.

In the Staedel–Rugheimer pyrazine synthesis (1876) 2-chloroacetophenone is reacted with ammonia to the amino ketone, then condensed and then oxidized to a pyrazine. [4] A variation is the Gutknecht pyrazine synthesis (1879) also based on this selfcondensation, but differing in the way the alpha-ketoamine is synthesised [5][6]

Gutknecht pyrazine synthesis

The Gastaldi synthesis (1921) is another variation:[7][8]

Gastaldi synthesis

See also

External links

References

  1. Brown, H.C., et al., in Baude, E.A. and Nachod, F.C., Determination of Organic Structures by Physical Methods, Academic Press, New York, 1955.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. http://www.itmonline.org/arts/ligustrazine.htm
  4. Ueber die Einwirkung von Ammoniak auf Chloracetylbenzol (pp. 563–564) W. Staedel, L. Rügheimer doi:10.1002/cber.187600901174 Berichte der deutschen chemischen Gesellschaft Volume 9, Issue 1, pp. 563–564, 1876
  5. Mittheilungen Ueber Nitrosoäthylmethylketon H. Gutknecht Berichte der deutschen chemischen Gesellschaft Volume 12, Issue 2 , pp. 2290–2292, 1879 doi:10.1002/cber.187901202284
  6. Heterocyclic chemistry T.L. Gilchrist ISBN 0-582-01421-2
  7. G. Gastaldi, Gazz. Chim. Ital. 51, (1921) 233
  8. Amines: Synthesis, Properties and Applications Stephen A. Lawrence 2004 Cambridge University Press ISBN 0-521-78284-8