From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Skeletal formula of rotenone
Space-filling model of the rotenone molecule
IUPAC name
Other names
Tubatoxin, Paraderil
83-79-4 YesY
ChemSpider 6500 N
Jmol 3D model Interactive image
KEGG C07593 YesY
MeSH Rotenone
PubChem 6758
UNII 03L9OT429T YesY
Molar mass 394.42 g·mol−1
Appearance Colorless to red crystalline solid[1]
Odor odorless[1]
Density 1.27 g/cm3 @ 20 °C
Melting point 165 to 166 °C (329 to 331 °F; 438 to 439 K)
Boiling point 210 to 220 °C (410 to 428 °F; 483 to 493 K) at 0.5 mmHg
Solubility Soluble in ether and acetone, slightly soluble in ethanol
Vapor pressure <0.00004 mmHg (20°C)[1]
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Rotenone is an odorless, colorless, crystalline ketonic chemical compound used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the seeds and stems of several plants, such as the jicama vine plant, and the roots of several members of Fabaceae. It was the first described member of the family of chemical compounds known as rotenoids.


The earliest record of the now-known rotenone-containing plants used for killing leaf-eating caterpillars was in 1848, and for centuries, the same plants were used to poison fish.[2] The active chemical component was first isolated in 1895 by a French botanist, Emmanuel Geoffroy, who called it nicouline, from a specimen of Robinia nicou, now called Lonchocarpus nicou, while traveling in French Guiana.[3] He wrote about this research in his thesis, published posthumously in 1895 after his death from a parasitic disease.[4] In 1902 Japanese chemist Nagai Nagayoshi isolated a pure crystalline compound from Derris elliptica which he called rotenone, after the Japanese name of the plant, roten. By 1930, nicouline and rotenone were established to be chemically the same.[5]


Rotenone is used as a pesticide, insecticide, and as a nonselective piscicide (fish killer).[6]

It is commercialized as cubé, tuba, or derris, in single preparation or in synergistic combination with other insecticides.[7] In the United States and Canada, all uses of rotenone except as a piscicide are being phased out.[8][9]

Rotenone has historically been used by indigenous peoples to catch fish. Typically, rotenone-containing plants in the Fabaceae family of legumes are crushed and introduced into a body of water, and as rotenone interferes with cellular respiration, the affected fish rise to the surface in an attempt to gulp air, where they are more easily caught.

Rotenone has been used by government agencies to kill fish in rivers and lakes in the United States since 1952.[10]

Small-scale sampling with rotenone is used by fish researchers studying the biodiversity of marine fishes to collect cryptic, or hidden, fishes, which represent an important component of shoreline fish communities. Rotenone is the most effective tool available because only small quantities are necessary. It has only minor and transient environmental side effects.[11]

Rotenone is also used in powdered form to treat scabies and head lice on humans, and parasitic mites on chickens, livestock, and pet animals.

Rotenone has been used as an organic[12] pesticide dust for gardens. Unselective in action, it kills potato beetles, cucumber beetles, flea beetles, cabbage worms, raspberry beetles, and asparagus beetles, as well as most other arthropods. It rapidly biodegrades under warm conditions, so harmful residues are minimal. A light dusting on the leaves of plants will control insects for several days.

Mechanism of action

Rotenone works by interfering with the electron transport chain in mitochondria. To be specific, it inhibits the transfer of electrons from iron-sulfur centers in complex I to ubiquinone. This interferes with NADH during the creation of usable cellular energy (ATP).[7] Complex I is unable to pass off its electron to CoQ, creating a back-up of electrons within the mitochondrial matrix. Cellular oxygen is reduced to the radical, creating a reactive oxygen species, which can damage DNA and other components of the mitochondria.[13]

Presence in plants

Rotenone is produced by extraction from the roots and stems of several tropical and subtropical plant species, especially those belonging to the genera Lonchocarpus and Derris.

Some of the plants containing rotenone:


Rotenone is classified by the World Health Organization as moderately hazardous.[18] It is mildly toxic to humans and other mammals, but extremely toxic to insects and aquatic life, including fish. This higher toxicity in fish and insects is because the lipophilic rotenone is easily taken up through the gills or trachea, but not as easily through the skin or the gastrointestinal tract. Rotenone is toxic to erythrocytes in vitro.[19]

The lowest lethal dose for a child is 143 mg/kg. Human deaths from rotenone poisoning are rare because its irritating action causes vomiting.[20] Deliberate ingestion of rotenone can be fatal.[21]

The compound decomposes when exposed to sunlight and usually has an activity of six days in the environment.[22] It oxidises to rotenolone, which is about an order of magnitude less toxic than rotenone. In water, the rate of decomposition depends upon several factors, including temperature, pH, water hardness and sunlight. The half-life in natural waters ranges from half a day at 24 °C to 3.5 days at 0 °C.[23]

Parkinson's disease

In 2000, injecting rotenone into rats was reported to cause the development of symptoms similar to those of Parkinson's disease (PD). Rotenone was continuously applied over a period of five weeks, mixed with DMSO and PEG to enhance tissue penetration, and injected into the jugular vein.[24] The study does not directly suggest rotenone exposure is responsible for PD in humans, but is consistent with the belief that chronic exposure to environmental toxins increases the likelihood of the disease.[25]

In addition, studies with primary cultures of rat neurons and microglia have shown low doses of rotenone (below 10 nM) induce oxidative damage and death of dopaminergic neurons,[26] and it is these neurons in the substantia nigra that die in Parkinson's disease. Another study has also described toxic action of rotenone at low concentrations (5 nM) in dopaminergic neurons from acute rat brain slices.[27] This toxicity was exacerbated by an additional cell stressor – elevated intracellular calcium concentration – adding support to the 'multiple hit hypothesis' of dopaminergic neuron death.

The neurotoxin MPTP had been known earlier to cause PD-like symptoms (in humans and other primates, though not in rats) by interfering with complex I in the electron transport chain and killing dopaminergic neurons in the substantia nigra. However, further studies involving MPTP have failed to show development of Lewy bodies, a key component to PD pathology. Therefore, the mechanism behind MPTP as it relates to Parkinson's disease is not fully understood.[28] Because of these developments, rotenone was investigated as a possible Parkinson-causing agent. Both MPTP and rotenone are lipophilic and can cross the blood–brain barrier.

In 2010, a study was published detailing the progression of Parkinson's-like symptoms in mice following chronic intragastric ingestion of low doses of rotenone. The concentrations in the central nervous system were below detectable limits, yet still induced PD pathology.[29]

In 2011, a US National Institutes of Health study showed a link between rotenone use and Parkinson's disease in farm workers.[30]

Notable administrations

In the summer of 1957, Abrams Creek was poisoned with rotenone for 14 miles below Abrams Falls [...] in order to create a premium rainbow trout fishery. The intent was to remove all extraneous "rough fish," to avoid competition for the preferred "game species," the exotic brown and rainbow trout. It is difficult to comprehend the logic in this strategy, since an entire food chain was destroyed. As a result of the effort, the only population of smoky madtom (Noturus baileyi) known at the time was extirpated from the stream.[31]

Rotenone was implemented in 2010 to kill an invasive goldfish population present in Mann Lake, with the intention of not disrupting the lake's trout population. Rotenone successfully achieved these aims, killing nearly 200,000 goldfish, and only three trout.[32]

In 2014, Rotenone was used to kill all of the fish in San Francisco's Mountain Lake, which is located in Mountain Lake Park.[33]

See also


  1. 1.0 1.1 1.2 Cite error: Invalid <ref> tag; no text was provided for refs named PGCH
  2. Metcalf RL. (1948). The Mode of Action of Organic Insecticides. National Research Council, Washington DC.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  4. "Useful tropical plants". ASNOM. 2008-01-02. Retrieved 2008-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  6. Peter Fimrite (2007-10-02). "Lake poisoning seems to have worked to kill invasive pike". San Francisco Chronicle.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. 7.0 7.1 Hayes WJ. (1991). Handbook on Pesticides, Volume 1. Academic Press. ISBN 0-12-334161-2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Reregistration Eligibility Decision for Rotenone, EPA 738-R-07-005, March 2007, United States Environmental Protection Agency
  9. Re-evaluation Note: Rotenone (REV2008-01, 29 January 2008), Consumer Product Safety, Health Canada
  10. Schmidt, Peter (28 February 2010). "One Strange Fish Tale". The Chronicle of Higher Education. Retrieved 24 September 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  12. "Effects of Rotenone, a commonly-used organic pesticide on mitochondrial complex 1 function and altered immune responses". University of Massachusetts Center for Agriculture. Retrieved 2014-02-10.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  13. Mehta, Suresh. "Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke". Journal of Cerebral Blood Flow and Metabolism. Retrieved 2014-04-14.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  14. 14.0 14.1 Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  15. Coates Palgrave, Keith (2002). Trees of Southern Africa. Struik. ISBN 0-86977-081-0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Nellis, David N. (1994). Seashore plants of South Florida and the Caribbean. Pineapple Press. 160 p.
  17. Barton D, Meth-Cohn O. (1999). Comprehensive Natural Products Chemistry. Pergamon. ISBN 0-08-091283-4.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. IPCS, International Programme on Chemical Safety; United Nations Environment Programme; International Labour Organization; World Health Organization. (2007). The WHO Recommended Classification of Pesticides by Hazard. World Health Organization. ISBN 92-4-154663-8. Retrieved 2007-12-02. <templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  20. "Rotenone". Pesticides News. 54: 20–21. 2001.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  22. Vitax Safety Data Sheet for Derris dust, revised October 1998
  23. "Rotenone. A Brief Review of its Chemistry, Environmental Fate, and the Toxicity of Rotenone Formulations" (PDF).<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  25. Summary of the article by Dr. Greenamyre on pesticides and Parkinson's Disease at
  26. Gao HM, Liu B, Hong JS (July 2003). "Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons". The Journal of Neuroscience. 23 (15): 6181–7. PMID 12867501. <templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  28. Neurotransmitters and Disorders of the Basal Ganglia -- Basic Neurochemistry -- NCBI Bookshelf, American Society for Neurochemistry
  29. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  30. Lua error in Module:Citation/CS1/Identifiers at line 47: attempt to index field 'wikibase' (a nil value).
  31. Peine, John D. Ecosystem Management for sustainability. p. 50. ISBN 1-57444-053-5.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. Monroe, Bill (December 3, 2010). "Mann Lake Gets a Second Round of Rotenone for Cutthroat Restoration". The Oregonian. Oregon Live LLC. Archived from the original on December 28, 2012. Retrieved 2012-12-20.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. Fimrite, Peter (12 November 2014). "Alien fish poisoned by the thousands to save S.F.'s Mountain Lake". SFGate / Hearst. Retrieved 24 September 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

External links