Signeddigit representation
Numeral systems 

Hindu–Arabic numeral system 
East Asian 
Alphabetic 
Former 
Positional systems by base 
Nonstandard positional numeral systems 

List of numeral systems 
In mathematical notation for numbers, signeddigit representation is a positional system with signed digits; the representation may not be unique.
Signeddigit representation can be used to accomplish fast addition of integers because it can eliminate chains of dependent carries.^{[1]} In the binary numeral system, a special case signeddigit representation is the nonadjacent form, which can offer speed benefits with minimal space overhead.
Challenges in calculation stimulated early authors Colson (1726) and Cauchy (1840) to use signeddigit representation. The further step of replacing negated digits with new ones was suggested by Selling (1887) and Cajori (1928).
Contents
Balanced form
In balanced form, the digits are drawn from a range to , where typically . For balanced forms, odd base numbers are advantageous. With an odd base number, truncation and rounding become the same operation, and all the digits except 0 are used in both positive and negative form.
A notable example is balanced ternary, where the base is , and the numerals have the values −1, 0 and +1 (rather than 0, 1, and 2 as in the standard ternary numeral system). Balanced ternary uses the minimum number of digits in a balanced form. Balanced decimal uses digits from −5 to +4. Balanced base nine, with digits from −4 to +4 provides the advantages of an oddbase balanced form with a similar number of digits, and is easy to convert to and from balanced ternary.
Other notable examples include Booth encoding and nonadjacent form, both of which use a base of , and both of which use numerals with the values −1, 0, and +1 (rather than 0 and 1 as in the standard binary numeral system).
Nonuniqueness
Note that signeddigit representation is not necessarily unique. For instance:
 (0 1 1 1)_{2} = 4 + 2 + 1 = 7
 (1 0 −1 1)_{2} = 8 − 2 + 1 = 7
 (1 −1 1 1)_{2} = 8 − 4 + 2 + 1 = 7
 (1 0 0 −1)_{2} = 8 − 1 = 7
The nonadjacent form (NAF) does guarantee a unique representation for every integer value, as do balanced forms.
When representations are extended to fractional numbers, uniqueness is lost for nonadjacent and balanced forms; for example, consider the following repeating binary numbers in NAF,
 (0 . 1 0 1 0 1 0 …)_{2} = ^{2}⁄_{3} = (1 . 0 −1 0 −1 0 −1 …)_{2}
and the balanced form repeating decimals
 (0 . 4 4 4 …)_{10} = ^{4}⁄_{9} = (1 . −5 −5 −5 …)_{10}
Such examples can be shown to exist by considering the greatest and smallest possible representations with integral parts 0 and 1 respectively, and then noting that they are equal. (Indeed, this works with any integralbase system.)
In written and spoken language
The oral and written forms of numbers in the Punjabi language use a form of a negative numeral one written as una or un.^{[2]} This negative one is used to form 19, 29, …, 89 from the root for 20, 30, …, 90. Explicitly, here are the numbers:
 19 unni, 20 vih, 21 ikki
 29 unatti, 30 tih, 31 ikatti
 39 untali, 40 chali, 41 iktali
 49 unanja, 50 panjah, 51 ikvanja
 59 unahat, 60 sath, 61 ikahat
 69 unattar, 70 sattar, 71 ikhattar
 79 unasi, 80 assi, 81 ikiasi
 89 unanve, 90 nabbe, 91 ikinnaven.
In 1928, Florian Cajori noted the recurring theme of signed digits, starting with Colson (1726) and Cauchy (1840). In his book History of Mathematical Notations, Cajori titled the section "Negative numerals".^{[3]} Eduard Selling^{[4]} advocated inverting the digits 1, 2, 3, 4, and 5 to indicate the negative sign. He also suggested snie, jes, jerd, reff, and niff as names to use vocally. Most of the other early sources used a bar over a digit to indicate a negative sign for a it. For completeness, Colson^{[5]} uses examples and describes addition (pp 163,4), multiplication (pp 165,6) and division (pp 170,1) using a table of multiples of the divisor. He explains the convenience of approximation by truncation in multiplication. Colson also devised an instrument (Counting Table) that calculated using signed digits.
See also
Notes and references
 ↑ Dhananjay Phatak, I. Koren, Hybrid SignedDigit Number Systems: A Unified Framework for Redundant Number Representations with Bounded Carry Propagation Chains, 1994, [1]
 ↑ Punjabi numbers from Quizlet
 ↑ Cajori, Florian (1993) [19281929]. A History of Mathematical Notations. Dover Publications. p. 57. ISBN 0486677664.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
 ↑ Eduard Selling (1887) Eine neue Rechenmachine, pp. 15–18, Berlin
 ↑ John Colson (1726) "A Short Account of NegativoAffirmativo Arithmetik", Philosophical Transactions of the Royal Society 34:161–73. Available as Early Journal Content from JSTOR
 J. P. Balantine (1925) "A Digit for Negative One", American Mathematical Monthly 32:302.
 AugustinLouis Cauchy (16 Nov 1840) "Sur les moyens d'eviter les erreurs dans les calculs numerique", Comptes rendus 11:789. Also found in Oevres completes Ser. 1, vol. 5, pp. 434–42.
 Lui Han, Dongdong Chen, SeokBum Ko, Khan A. Wahid "Nonspeculative Decimal Signed Digit Adder" from Department of Electrical and Computer Engineering, University of Saskatchewan.
 Rudolf Mehmke (1902) "Numerisches Rechen", §4 Beschränkung in den verwendeten Ziffern, Klein's encyclopedia, I2, p. 944.