Superparticular ratio

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematics, a superparticular ratio, also called a superparticular number or epimoric ratio, is a ratio of the form

\frac{n + 1}{n} = 1 + \frac{1}{n} where n is a positive integer.

Thus:

<templatestyles src="Template:Blockquote/styles.css" />

A superparticular number is when a great number contains a lesser number, to which it is compared, and at the same time one part of it. For example, when 3 and 2 are compared, they contain 2, plus the 3 has another 1, which is half of two. When 3 and 4 are compared, they each contain a 3, and the 4 has another 1, which is a third apart of 3. Again, when 5, and 4 are compared, they contain the number 4, and the 5 has another 1, which is the fourth part of the number 4, etc.

— Throop (2006), [1]

Superparticular ratios were written about by Nicomachus in his treatise "Introduction to Arithmetic". Although these numbers have applications in modern pure mathematics, the areas of study that most frequently refer to the superparticular ratios by this name are music theory[2] and the history of mathematics.[3]

Mathematical properties

As Euler observed, the superparticular numbers (including also the multiply superparticular ratios, numbers formed by adding an integer other than one to a unit fraction) are exactly the rational numbers whose continued fraction terminates after two terms. The numbers whose continued fraction terminates in one term are the integers, while the remaining numbers, with three or more terms in their continued fractions, are superpartient.[4]

The Wallis product

 
\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots = \frac{4}{3}\cdot\frac{16}{15}\cdot\frac{36}{35}\cdots=2\cdot\frac{8}{9}\cdot\frac{24}{25}\cdot\frac{48}{49}\cdots=\frac{\pi}{2}

represents the irrational number π in several ways as a product of superparticular ratios and their inverses. It is also possible to convert the Leibniz formula for π into an Euler product of superparticular ratios in which each term has a prime number as its numerator and the nearest multiple of four as its denominator:[5]

\pi/4=\frac{3}{4} \cdot \frac{5}{4} \cdot \frac{7}{8} \cdot \frac{11}{12} \cdot \frac{13}{12} \cdot\frac{17}{16}\cdots

In graph theory, superparticular numbers (or rather, their reciprocals, 1/2, 2/3, 3/4, etc.) arise via the Erdős–Stone theorem as the possible values of the upper density of an infinite graph.[6]

Other applications

In the study of harmony, many musical intervals can be expressed as a superparticular ratio. Indeed, whether a ratio was superparticular was the most important criterion in Ptolemy's formulation of musical harmony.[7] In this application, Størmer's theorem can be used to list all possible superparticular numbers for a given limit; that is, all ratios of this type in which both the numerator and denominator are smooth numbers.[2]

These ratios are also important in visual harmony. Aspect ratios of 4:3 and 3:2 are common in digital photography,[8] and aspect ratios of 7:6 and 5:4 are used in medium format and large format photography respectively.[9]

Ratio names and related intervals

Every pair of adjacent positive integers represent a superparticular ratio, and similarly every pair of adjacent harmonics in the harmonic series (music) represent a superparticular ratio. Many individual superparticular ratios have their own names, either in historical mathematics or in music theory. These include the following:

Examples
Ratio Name Related musical interval Audio
2:1 duplex octave <phonos file="Perfect octave on C.mid">Play</phonos>
3:2 sesquialterum perfect fifth <phonos file="Just perfect fifth on C.mid">Play</phonos>
4:3 sesquitertium perfect fourth <phonos file="Just perfect fourth on C.mid">Play</phonos>
5:4 sesquiquartum major third <phonos file="Just major third on C.mid">Play</phonos>
6:5 sesquiquintum minor third <phonos file="Just minor third on C.mid">Play</phonos>
7:6 septimal minor third <phonos file="Septimal minor third on C.mid">Play</phonos>
8:7 septimal major second <phonos file="Septimal major second on C.mid">Play</phonos>
9:8 sesquioctavum major second <phonos file="Major second on C.mid">Play</phonos>
10:9 sesquinona minor tone <phonos file="Minor tone on C.mid">Play</phonos>
11:10 greater undecimal neutral second <phonos file="Greater undecimal neutral second on C.mid">Play</phonos>
12:11 lesser undecimal neutral second <phonos file="Lesser undecimal neutral second on C.mid">Play</phonos>
15:14 septimal diatonic semitone <phonos file="Septimal diatonic semitone on C.mid">Play</phonos>
16:15 just diatonic semitone <phonos file="Just diatonic semitone on C.mid">Play</phonos>
21:20 Septimal chromatic semitone <phonos file="septimal chromatic semitone on C.mid">Play</phonos>
25:24 just chromatic semitone <phonos file="Just chromatic semitone on C.mid">Play</phonos>
28:27 septimal third-tone Audio file "Septimal third-tone on C.mid" not found
49:48 septimal diesis <phonos file="Septimal diesis on C.mid">Play</phonos>
50:49 Septimal sixth-tone Audio file "Septimal sixth-tone on C.mid" not found
81:80 syntonic comma <phonos file="Syntonic comma on C.mid">Play</phonos>
126:125 septimal semicomma <phonos file="Septimal semicomma on C.mid">Play</phonos>
225:224 septimal kleisma Audio file "Septimal kleisma on C.mid" not found
4375:4374 ragisma Audio file "Ragisma on C.mid" not found

The root of some of these terms comes from Latin sesqui- "one and a half" (from semis "a half" + -que "and") describing the ratio 3:2.

Sources

  1. Throop, Priscilla (2006). Isidore of Seville's Etymologies: Complete English Translation, Volume 1, p.III.6.12,n.7. ISBN 978-1-4116-6523-1.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.. On pp. 123–124 the book discusses the classification of ratios into various types including the superparticular ratios, and the tradition by which this classification was handed down from Nichomachus to Boethius, Campanus, Oresme, and Clavius.
  4. Lua error in package.lua at line 80: module 'strict' not found.. See in particular p. 304.
  5. Lua error in package.lua at line 80: module 'strict' not found..
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. Lua error in package.lua at line 80: module 'strict' not found..
  8. Lua error in package.lua at line 80: module 'strict' not found.. Ang also notes the 16:9 (widescreen) aspect ratio as another common choice for digital photography, but unlike 4:3 and 3:2 this ratio is not superparticular.
  9. The 7:6 medium format aspect ratio is one of several ratios possible using medium-format 120 film, and the 5:4 ratio is achieved by two common sizes for large format film, 4×5 inches and 8×10 inches. See e.g. Lua error in package.lua at line 80: module 'strict' not found..

External links