Tetrahedral-octahedral honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Alternated cubic honeycomb
210px HC P1-P3.png
Type Uniform honeycomb
Family Alternated hypercubic honeycomb
Simplectic honeycomb
Indexing[1] J21,31,51, A2
W9, G1
Schläfli symbol h{4,3,4}
{3[4]}
ht0,3{4,3,4}
h{4,4}h{∞}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png or CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png or CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel nodes hh.pngCDel 4a4b.pngCDel branch.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node h.png = CDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png
Cell types {3,3}, {3,4}
Face types triangle {3}
Edge figure [{3,3}.{3,4}]2
(rectangle)
Vertex figure 80px80px
Cuboctahedron.pngCantellated tetrahedron.png
(cuboctahedron)
Symmetry group Fm3m (225)
Symmetry ½{\tilde{C}}_3, [1+,4,3,4]
{\tilde{B}}_3, [4,31,1]
{\tilde{A}}_3×2, <[3[4]]>
Dual Dodecahedrille
rhombic dodecahedral honeycomb
Properties vertex-transitive, edge-transitive, face-transitive, quasiregular honeycomb

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating octahedra and tetrahedra in a ratio of 1:2.

Other names include half cubic honeycomb, half cubic cellulation, or tetragonal disphenoidal cellulation. John Horton Conway calls this honeycomb a tetroctahedrille, and its dual dodecahedrille.

It is vertex-transitive with 8 tetrahedra and 6 octahedra around each vertex. It is edge-transitive with 2 tetrahedra and 2 octahedra alternating on each edge.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is part of an infinite family of uniform honeycombs called alternated hypercubic honeycombs, formed as an alternation of a hypercubic honeycomb and being composed of demihypercube and cross-polytope facets. It is also part of another infinite family of uniform honeycombs called simplectic honeycombs.

In this case of 3-space, the cubic honeycomb is alternated, reducing the cubic cells to tetrahedra, and the deleted vertices create octahedral voids. As such it can be represented by an extended Schläfli symbol h{4,3,4} as containing half the vertices of the {4,3,4} cubic honeycomb.

There's a similar honeycomb called gyrated tetrahedral-octahedral honeycomb which has layers rotated 60 degrees so half the edges have neighboring rather than alternating tetrahedra and octahedra.

Cartesian coordinates

For an alternated cubic honeycomb, with edges parallel to the axes and with an edge length of 1, the Cartesian coordinates of the vertices are: (For all integral values: i,j,k with i+j+k even)

(i, j, k)
This diagram shows an exploded view of the cells surrounding each vertex.

Symmetry

There are two reflective constructions and many alternated cubic honeycomb ones; examples:

Symmetry {\tilde{B}}_3, [4,31,1]
= ½{\tilde{C}}_3, [1+,4,3,4]
{\tilde{A}}_3, [3[4]]
= ½{\tilde{B}}_3, [1+,4,31,1]
[[(4,3,4,2+)]] [(4,3,4,2+)]
Space group Fm3m (225) F43m (216) I43m (217) P43m (215)
Image Tetrahedral-octahedral honeycomb.png 160px
Types of tetrahedra 1 2 2 4
Coxeter
diagram
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png = CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h1.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png CDel branch.pngCDel 4a4b.pngCDel nodes hh.png CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png

Alternated cubic honeycomb slices

The alternated cubic honeycomb can be sliced into sections, where new square faces are created from inside of the octahedron. Each slice will contain up and downward facing square pyramids and tetrahedra sitting on their edges. A second slice direction needs no new faces and includes alternating tetrahedral and octahedral. This slab honeycomb is a scaliform honeycomb rather than uniform because it has nonuniform cells.

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
240px 240px

Projection by folding

The alternated cubic honeycomb can be orthogonally projected into the planar square tiling by a geometric folding operation that maps one pairs of mirrors into each other. The projection of the alternated cubic honeycomb creates two offset copies of the square tiling vertex arrangement of the plane:

Coxeter
group
{\tilde{A}}_3 {\tilde{C}}_2
Coxeter
diagram
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Image Tiling Dual Semiregular V4-8-8 Tetrakis Square.svg Uniform tiling 44-t0.png
Name alternated cubic honeycomb square tiling

A3/D3 lattice

Its vertex arrangement represents an A3 lattice or D3 lattice.[2][3] It is the 3-dimensional case of a simplectic honeycomb. Its Voronoi cell is a rhombic dodecahedron, the dual of the cuboctahedron vertex figure for the tet-oct honeycomb.

The D+
3
packing can be constructed by the union of two D3 (or A3) lattices. The D+
n
packing is only a lattice for even dimensions. The kissing number is 22=4, (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[4]

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png

The A*
3
or D*
3
lattice (also called A4
3
or D4
3
) can be constructed by the union of all four A3 lattices, and is identical to the vertex arrangement of the disphenoid tetrahedral honeycomb, dual honeycomb of the uniform bitruncated cubic honeycomb:[5] It is also the body centered cubic, the union of two cubic honeycombs in dual positions.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png.

The kissing number of the D*
3
lattice is 8[6] and its Voronoi tessellation is a bitruncated cubic honeycomb, CDel branch 11.pngCDel 4a4b.pngCDel nodes.png, containing all truncated octahedral Voronoi cells, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png.[7]

Related honeycombs

C3 honeycombs

The [4,3,4], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, Coxeter group generates 15 permutations of uniform honeycombs, 9 with distinct geometry including the alternated cubic honeycomb. The expanded cubic honeycomb (also known as the runcinated tesseractic honeycomb) is geometrically identical to the cubic honeycomb.

B3 honeycombs

The [4,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png, Coxeter group generates 9 permutations of uniform honeycombs, 4 with distinct geometry including the alternated cubic honeycomb.

A3 honeycombs

This honeycomb is one of five distinct uniform honeycombs[8] constructed by the {\tilde{A}}_3 Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

Quasiregular honeycombs

Cantic cubic honeycomb

Cantic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h2{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Cells t{3,4} Uniform polyhedron-43-t12.png
r{4,3} Uniform polyhedron-43-t1.png
t{3,3} Uniform polyhedron-33-t01.png
Vertex figure 60px
Coxeter groups [4,31,1], {\tilde{B}}_3
[3[4]], {\tilde{A}}_3
Symmetry group Fm3m (225)
Dual half oblate octahedrille
Properties vertex-transitive

The cantic cubic honeycomb, cantic cubic cellulation or truncated half cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated octahedra, cuboctahedra and truncated tetrahedra in a ratio of 1:1:2. Its vertex figure is a rectangular pyramid.

John Horton Conway calls this honeycomb a truncated tetraoctahedrille, and its dual half oblate octahedrille.

210px 130px

Symmetry

It has two different uniform constructions. The {\tilde{A}}_3 construction can be seen with alternately colored truncated tetrahedra.

Symmetry [4,31,1], {\tilde{B}}_3
=<[3[4]]>
[3[4]], {\tilde{A}}_3
Space group Fm3m (225) F43m (216)
Coloring Truncated Alternated Cubic Honeycomb.svg 150px
Coxeter CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Vertex figure 80px 80px

Related honeycombs

It is related to the cantellated cubic honeycomb. Rhombicuboctahedra are reduced to truncated octahedra, and cubes are reduced to truncated tetrahedra.

160px
cantellated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated Alternated Cubic Honeycomb.svg
Cantic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
rr{4,3}, r{4,3}, {4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t{3,4}, r{4,3}, t{3,3}

Runcic cubic honeycomb

Runcic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h3{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Face rr{4,3} Uniform polyhedron-43-t02.png
{4,3} Uniform polyhedron-43-t0.png
{3,3} Uniform polyhedron-33-t0.png
Vertex figure 80px
Tapered triangular prism
Coxeter group {\tilde{B}}_4, [4,31,1]
Symmetry group Fm3m (225)
Dual quarter cubille
Properties vertex-transitive

The runcic cubic honeycomb or runcicantic cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of rhombicuboctahedra, cubes, and tetrahedra in a ratio of 1:1:2. Its vertex figure is a triangular prism, with a tetrahedron on one end, cube on the opposite end, and three rhombicuboctahedra around the trapezoidal sides.

John Horton Conway calls this honeycomb a 3-RCO-trille, and its dual quarter cubille.

195pxHC A5-P2-P1.png

Related honeycombs

It is related to the runcinated cubic honycomb, with quarter of the cubes alternated into tetrahedra, and half expanded into rhombicuboctahedra.

Runcinated cubic honeycomb.png
Runcinated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
160px
Runcic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
{4,3}, {4,3}, {4,3}, {4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png, CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
h{4,3}, rr{4,3}, {4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png

This honeycomb can be divided on truncated square tiling planes, using the octagons centers of the rhombicuboctahedra, creating square cupolae. This scaliform honeycomb is represented by Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png, and symbol s3{2,4,4}, with coxeter notation symmetry [2+,4,4].

320px.

Runcicantic cubic honeycomb

Runcicantic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h2,3{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Coxeter group {\tilde{B}}_4, [4,31,1]
Vertex figure 80px
Symmetry group Fm3m (225)
Dual half pyramidille
Properties vertex-transitive

The runcicantic cubic honeycomb or runcicantic cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated cuboctahedra, truncated cubes and truncated tetrahedra in a ratio of 1:1:2. It is related to the runcicantellated cubic honeycomb.

John Horton Conway calls this honeycomb a f-tCO-trille, and its dual half pyramidille.

190px120px

A related uniform skew apeirohedron exists with the same vertex arrangement, but triangles and square removed. It can be seen as truncated tetrahedra and truncated cubes augmented together.

Runcicantic cubic honeycomb apeirohedron 6688.png

Related honeycombs

240px
Runcicantic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Runcitruncated cubic honeycomb.jpg
Runcicantellated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png

Gyrated tetrahedral-octahedral honeycomb

Gyrated tetrahedral-octahedral honeycomb
Type convex uniform honeycomb
Coxeter diagram CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
Schläfli symbol h{4,3,4}:g
h{6,3}h{∞}
s{3,6}h{∞}
s{3[3]}h{∞}
Cell types {3,3}, {3,4}
Vertex figure 80px
Triangular orthobicupola G3.4.3.4
Space group P63/mmc (194)
[3,6,2+,∞]
Dual trapezo-rhombic dodecahedral honeycomb
Properties vertex-transitive, face-transitive

The gyrated tetrahedral-octahedral honeycomb or gyrated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of octahedra and tetrahedra in a ratio of 1:2.

It is vertex-uniform with 8 tetrahedra and 6 octahedra around each vertex.

It is not edge-uniform. All edges have 2 tetrahedra and 2 octahedra, but some are alternating, and some are paired.

240pxGyrated alternated cubic honeycomb.png

It can be seen as reflective layers of this layer honeycomb:

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
240px


Construction by gyration

This is a less symmetric version of another honeycomb, tetrahedral-octahedral honeycomb, in which each edge is surrounded by alternating tetrahedra and octahedra. Both can be considered as consisting of layers one cell thick, within which the two kinds of cell strictly alternate. Because the faces on the planes separating these layers form a regular pattern of triangles, adjacent layers can be placed so that each octahedron in one layer meets a tetrahedron in the next layer, or so that each cell meets a cell of its own kind (the layer boundary thus becomes a reflection plane). The latter form is called gyrated.

The vertex figure is called a triangular orthobicupola, compared to the tetrahedral-octahedral honeycomb whose vertex figure cuboctahedron in a lower symmetry is called a triangular gyrobicupola, so the gyro- prefix is reversed in usage.

Vertex figures
Honeycomb Gyrated tet-oct Reflective tet-oct
Image Triangular orthobicupola.png Cuboctahedron.jpg
Name triangular orthobicupola triangular gyrobicupola
Vertex figure 100px 100px
Symmetry D3h, order 12
D3d, order 12
(Oh, order 48)

Construction by alternation

File:Ditetrahedral-octahedral honeycomb verf.png
Vertex figure with nonplanar 3.3.3.3 vertex configuration for the triangular bipyramids

The geometry can also be constructed with an alternation operation applied to a hexagonal prismatic honeycomb. The hexagonal prism cells become octahedra and the voids create triangular bipyramids which can be divided into pairs of tetrahedra of this honeycomb. This honeycomb with bipyramids is called a ditetrahedral-octahedral honeycomb. There are 3 Coxeter-Dynkin diagrams, which can be seen as 1, 2, or 3 colors of octahedra:

  1. CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
  2. CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
  3. CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png

Gyroelongated alternated cubic honeycomb

Gyroelongated alternated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h{4,3,4}:ge
{3,6}h1{∞}
Coxeter diagram CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
Cell types {3,3}, {3,4}, (3.4.4)
Face types {3}, {4}
Vertex figure 120px
Space group P63/mmc (194)
[3,6,2+,∞]
Properties vertex-uniform

The gyroelongated alternated cubic honeycomb or elongated triangular antiprismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octahedra, triangular prisms, and tetrahedra in a ratio of 1:2:2.

It is vertex-uniform with 3 octahedra, 4 tetrahedra, 6 triangular prisms around each vertex.

It is one of 28 convex uniform honeycombs.

The elongated alternated cubic honeycomb has the same arrangement of cells at each vertex, but the overall arrangement differs. In the elongated form, each prism meets a tetrahedron at one of its triangular faces and an octahedron at the other; in the gyroelongated form, the prism meets the same kind of deltahedron at each end.

240px 180px

Elongated alternated cubic honeycomb

Elongated alternated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h{4,3,4}:e
{3,6}g1{∞}
Cell types {3,3}, {3,4}, (3.4.4)
Vertex figure 120px
triangular cupola joined to isosceles hexagonal pyramid
Space group  ?
Properties vertex-transitive

The elongated alternated cubic honeycomb or elongated triangular gyroprismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octahedra, triangular prisms, and tetrahedra in a ratio of 1:2:2.

It is vertex-uniform with 3 octahedra, 4 tetrahedra, 6 triangular prisms around each vertex. Each prism meets an octahedron at one end and a tetrahedron at the other.

It is one of 28 convex uniform honeycombs.

It has a gyrated form called the gyroelongated alternated cubic honeycomb with the same arrangement of cells at each vertex.

240px180px

See also

Notes

  1. For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D3.html
  3. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A3.html
  4. Conway (1998), p. 119
  5. http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds3.html
  6. Conway (1998), p. 120
  7. Conway (1998), p. 466
  8. [1], A000029 6-1 cases, skipping one with zero marks

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Branko Grünbaum, Uniform tilings of 3-space. Geombinatorics 4(1994), 49 - 56.
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [2]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  • D. M. Y. Sommerville, An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, 1930. 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
  • Lua error in package.lua at line 80: module 'strict' not found.

External links