Timeline of volcanism on Earth

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Error: Image is invalid or non-existent.

This timeline of volcanism on Earth is a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission around the Quaternary period. Some cooled the global climate; the extent of this effect depends on the amount of sulfur dioxide emitted.[1][2] The topic in the background is an overview of the VEI and sulfur dioxide emission/ Volcanic winter relationship. Before the Holocene epoch the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. So, the known large eruptions after the Paleogene period are listed, and especially those relating to the Yellowstone hotspot, the Santorini, and the Taupo Volcanic Zone. Only some eruptions before the Neogene period are listed. Active volcanoes such as Stromboli, Mount Etna and Kilauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: so Santorini, six times and Yellowstone hotspot, twenty-one times. The Bismarck volcanic arc, New Britain and the Taupo Volcanic Zone, New Zealand appear often too.

In order to keep the list manageable, the eruptions in the Holocene on the link: Holocene Volcanoes in Kamchatka aren't yet added, but they are listed in Peter L. Ward's supplemental table.[3]

Large Quaternary eruptions

The Holocene epoch begins 11,700 years BP[4] (10,000 14C years ago).

Since 1000 AD

  • Pinatubo, island of Luzon, Philippines; 1991, June 15; VEI 6; 6 to 16 km3 (1.4 to 3.8 cu mi) of tephra;[5] an estimated 20,000,000 tonnes (22,000,000 short tons) of SO
    were emitted[1]
  • Novarupta, Alaska Peninsula; 1912, June 6; VEI 6; 13 to 15 km3 (3.1 to 3.6 cu mi) of lava[6][7][8]
  • Santa Maria, Guatemala; 1902, October 24; VEI 6; 20 km3 (4.8 cu mi) of tephra[9]
  • Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 km3 (5.0 cu mi) of tephra[10]
  • Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 150 km3 (36 cu mi) of tephra;[5] an estimated 200,000,000 t (220,000,000 short tons) of SO
    were emitted, produced the "Year Without a Summer"[11]
  • The "Mysterious 1810 Event" VEI 6.5; discovered from ice cores in the 1980s.[12]
  • Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; 14 km3 (3.4 cu mi) of lava, an estimated 120,000,000 t (130,000,000 short tons) of SO
    were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[13]
  • Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 km3 (7.2 cu mi) of tephra[5]
  • Kolumbo, Santorini, Greece; 1650, September 27; VEI 5; 2 km3 (0.5 cu mi) of tephra[14]
  • Huaynaputina, Peru; 1600, February 19; VEI 6; 30 km3 (7.2 cu mi) of tephra[15]
  • Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 km3 (3.4 cu mi) of tephra[5]
  • Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra[5]
  • 1452-53 New Hebrides arc, Vanuatu; the location of this eruption in the South Pacific is uncertain, as it has been identified from distant ice core records; the only pyroclastic flows are found at Kuwae; 36 to 96 km3 (8.6 to 23.0 cu mi) of tephra; 175,000,000–700,000,000 t (193,000,000–772,000,000 short tons) of sulfuric acid[16][17][18]
  • Quilotoa, Ecuador; 1280(?); VEI 6; 21 km3 (5.0 cu mi) of tephra[5]
  • Samalas volcano, Rinjani Volcanic Complex, Lombok Island, Indonesia; 1257; 40 km3 (dense-rock equivalent) of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.[19][20]

Overview of Common Era

This is a sortable summary of major eruptions over the last 2000 years with VEI 6+ (but including the notable VEI 5 eruptions of Mount St. Helens, Mount Tarawera and Mount Vesuvius). Date uncertainties, tephra volumes, and references are not included.

Caldera/ Eruption name Volcanic arc/ belt
or Subregion or Hotspot
VEI Date Known/proposed consequences
Mount Pinatubo Luzon Volcanic Arc 6 1991, Jun 15 Global temperature fell by 0.4 °C
Mount St. Helens Cascade Volcanic Arc 5 1980, May 18
Novarupta Aleutian Range 6 1912, Jun 6
Santa María Central America Volcanic Arc 6 1902, Oct 24
Mount Tarawera Taupo Volcanic Zone 5 1886, Jun-Aug Destruction of the Pink and White Terraces, which were nicknamed the '8th wonder of the natural world'.
Krakatoa Sunda Arc 6 1883, Aug 26–27 At least 30,000 dead
Mount Tambora Lesser Sunda Islands 7 1815, Apr 10 Year Without a Summer (1816)
Grímsvötn and Laki Iceland 6 1783-85 Mist Hardships
Long Island (Papua New Guinea) Bismarck Volcanic Arc 6 1660
Kolumbo, Santorini South Aegean Volcanic Arc 5 1650, Sep 27
Huaynaputina Andes, Central Volcanic Zone 6 1600, Feb 19 Russian famine of 1601–1603
Billy Mitchell Bougainville & Solomon Is. 6 1580
Bárðarbunga Iceland 6 1477
Kuwae New Hebrides Arc 6 1452-53 2nd pulse[21] of Little Ice Age?
Quilotoa Andes, Northern Volcanic Zone 6 1280
Samalas (Mount Rinjani) Lombok, Lesser Sunda Islands 6 1257 1st pulse[22][23] of Little Ice Age? (c.1250)
Baekdu Mountain/Tianchi eruption China/ North Korea border 7 946, Nov-947 Limited regional climatic effects.[24]
Katla/Eldgjá eruption Iceland 6 934-940
Ceboruco Trans-Mexican Volcanic Belt 6 930
Dakataua Bismarck Volcanic Arc 6 800
Pago Bismarck Volcanic Arc 6 710
Mount Churchill eastern Alaska, USA 6 700
Rabaul Caldera Bismarck Volcanic Arc 6 540 (est.) Extreme weather events of 535–536
Ilopango Central America Volcanic Arc 6 450
Ksudach Kamchatka Peninsula 6 240
Taupo Caldera/Hatepe eruption Taupo Volcano 7 180 or 230 Affected skies over Rome and China
Mount Vesuvius/Pompeii eruption Italy 5 79
Mount Churchill eastern Alaska, USA 6 60
Ambrym New Hebrides Arc 6 50
Apoyeque Central America Volcanic Arc 6 50 BC

Note: Caldera names tend to change over time. For example, Okataina Caldera, Haroharo Caldera, Haroharo volcanic complex, Tarawera volcanic complex had the same magma source in the Taupo Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field had all Yellowstone hotspot as magma source.

Earlier Quaternary eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

Large Neogene eruptions

Pliocene eruptions

Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.

Timeline of volcanism on Earth is located in Nevada
Santa Rosa-Calico
Santa Rosa-Calico
Virgin Valley
Virgin Valley
Black Mountain
Black Mountain
Silent Canyon
Silent Canyon
Timber Mountain
Timber Mountain
Long Valley
Long Valley
Lunar Crater
Lunar Crater
Nevada/ California:
Volcanism locations.
Timeline of volcanism on Earth is located in Colorado
La Garita
La Garita
Lake City
Lake City
Colorado volcanism. Links: La Garita, Cochetopa and North Pass (North Pass), Lake City, and Dotsero.
Timeline of volcanism on Earth is located in New Mexico
New Mexico volcanism. Links: Valles, Socorro, Potrillo, Carrizozo, and Zuni-Bandera.

Miocene eruptions

Approximately 23.03 million years BP, the Neogene period and Miocene epoch begin.

  • Cerro Guacha, Bolivia; 5.6-5.8 Ma (Guacha ignimbrite).[54]
  • Lord Howe Island, Australia; Mount Lidgbird and Mount Gower are both made of basalt rock, remnants of lava flows that once filled a large volcanic caldera 6.4 Ma.[55]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.51 Ma ±0.13 (Conant Creek Tuff).[53]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.6 Ma; 500 cubic kilometers (120 cu mi) of Blue Creek Tuff.[3]
  • Cerro Panizos (size: 18 km wide), Altiplano-Puna Volcanic Complex, Bolivia; 6.1 Ma; 652 cubic kilometers (156 cu mi) of Panizos Ignimbrite.[3][56]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 6.27 Ma ±0.04 (Walcott Tuff).[53]
  • Yellowstone hotspot, Heise volcanic field, Idaho; Blacktail Caldera (size: 100 x 60 km), Idaho; 6.62 Ma ±0.03; 1,500 cubic kilometers (360 cu mi) of Blacktail Tuff.[3][53]
  • Pastos Grandes Caldera (size: 40 x 50 km), Altiplano-Puna Volcanic Complex, Bolivia; 8.3 Ma; 652 cubic kilometers (156 cu mi) of Sifon Ignimbrite.[3]
  • Manus Island, Admiralty Islands, northern Papua New Guinea; 8–10 Ma
  • Banks Peninsula, New Zealand; Akaroa erupted 9 Ma, Lyttelton erupted 12 Ma.[57]
  • Mascarene Islands were formed in a series of undersea volcanic eruptions 8-10 Ma, as the African plate drifted over the Réunion hotspot.
  • Yellowstone hotspot, Twin Fall volcanic field, Idaho; 8.6 to 10 Ma.[58]
  • Yellowstone hotspot, Picabo volcanic field, Idaho; 10.21 Ma ± 0.03 (Arbon Valley Tuff).[53]
  • Mount Cargill, New Zealand; the last eruptive phase ended some 10 Ma. The center of the caldera is about Port Chalmers, the main port of the city of Dunedin.[59][60][61]
  • Yellowstone hotspot, Idaho; Bruneau-Jarbidge volcanic field; 10.0 to 12.5 Ma (Ashfall Fossil Beds eruption).[58]
  • Anahim hotspot, British Columbia, Canada; has generated the Anahim Volcanic Belt over the last 13 million years.
  • Yellowstone hotspot, Owyhee-Humboldt volcanic field, Nevada/ Oregon; around 12.8 to 13.9 Ma.[58][62]
  • Campi Flegrei, Naples, Italy; 14.9 Ma; 79 cubic kilometers (19 cu mi) of Neapolitan Yellow Tuff.[3]
  • Huaylillas Ignimbrite, Bolivia, southern Peru, northern Chile; 15 Ma ±1; 1,100 cubic kilometers (264 cu mi) of tephra.[3]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Whitehorse Caldera (size: 15 km wide), Oregon; 15 Ma; 40 cubic kilometers (10 cu mi) of Whitehorse Creek Tuff.[3][63]
  • Yellowstone hotspot (?), Lake Owyhee volcanic field; 15.0 to 15.5 Ma.[64]
  • Yellowstone hotspot, McDermitt volcanic field (South), Jordan Meadow Caldera, (size: 10–15 km wide), Nevada/ Oregon; 15.6 Ma; 350 cubic kilometers (84 cu mi) Longridge Tuff member 2-3.[3][58][63][65]
  • Yellowstone hotspot, McDermitt volcanic field (South), Longridge Caldera, (size: 33 km wide), Nevada/ Oregon; 15.6 Ma; 400 cubic kilometers (96 cu mi) Longridge Tuff member 5.[3][58][63][65]
  • Yellowstone hotspot, McDermitt volcanic field (South), Calavera Caldera, (size: 17 km wide), Nevada/ Oregon; 15.7 Ma; 300 cubic kilometers (72 cu mi) of Double H Tuff.[3][58][63][65]
  • Yellowstone hotspot, McDermitt volcanic field (South), Hoppin Peaks Caldera, 16 Ma; Hoppin Peaks Tuff.[66]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Pueblo Caldera (size: 20 x 10 km), Oregon; 15.8 Ma; 40 cubic kilometers (10 cu mi) of Trout Creek Mountains Tuff.[3][63][66]
  • Yellowstone hotspot, McDermitt volcanic field (South), Washburn Caldera, (size: 30 x 25 km wide), Nevada/ Oregon; 16.548 Ma; 250 cubic kilometers (60 cu mi) of Oregon Canyon Tuff.[3][63][65]
  • Yellowstone hotspot (?), Northwest Nevada volcanic field (NWNV), Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of Pine Forest Range, Nevada; 15.5 to 16.5 Ma.[67]
  • Yellowstone hotspot, Steens and Columbia River flood basalts, Pueblo, Steens, and Malheur Gorge-region, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho, USA; most vigorous eruptions were from 14–17 Ma; 180,000 cubic kilometers (43,184 cu mi) of lava.[3][68][69][70][71][72][73][74]
  • Mount Lindesay (New South Wales), Australia; is part of the remnants of the Nandewar extinct volcano that ceased activity about 17 Ma after 4 million years of activity.
  • Oxaya Ignimbrites, northern Chile (around 18°S); 19 Ma; 3,000 cubic kilometers (720 cu mi) of tephra.[3]
  • Pemberton Volcanic Belt was erupting about 21 to 22 Ma.[75]

Volcanism before the Neogene

Distribution of selected hotspots. The numbers in the figure are related to the listed hotspots on Hotspot (geology).


Volcanic Explosivity Index (VEI)

VEI and ejecta volume correlation
VEI Tephra Volume
(cubic kilometers)
0 Effusive Masaya Volcano, Nicaragua, 1570
1 >0.00001 Poás Volcano, Costa Rica, 1991
2 >0.001 Mount Ruapehu, New Zealand, 1971
3 >0.01 Nevado del Ruiz, Colombia, 1985
4 >0.1 Eyjafjallajökull, Iceland, 2010
5 >1 Mount St. Helens, United States, 1980
6 >10 Krakatoa, Indonesia, 1883
7 >100 Mount Tambora, Indonesia, 1815
8 >1000 Yellowstone Caldera, United States, Pleistocene


Volcanic dimming

The global dimming through volcanism (ash aerosol and sulfur dioxide) is quite independent of the eruption VEI.[92][93][94] When sulfur dioxide (boiling point at standard state: -10 °C) reacts with water vapor, it creates sulfate ions (the precursors to sulfuric acid), which are very reflective; ash aerosol on the other hand absorbs Ultraviolet.[95] Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer.[96] The lower snow line and its higher albedo might prolong this cooling period.[97] Bipolar comparison showed six sulfate events: Tambora (1815), Cosigüina (1835), Krakatoa (1883), Agung (1963), and El Chichón (1982), and the 1809–10 ice core event.[98] And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory (MLO), Hawaii (19°32'N) detected only five eruptions:[99]

  • June 11, 2009, Sarychev Peak (?), Kuril Islands, 400 tons of tephra, VEI 4
    • Lua error in Module:Coordinates at line 668: callParserFunction: function "#coordinates" was not found.
  • June 12–15, 1991 (eruptive climax), Mount Pinatubo, Philippines, 11,000 ±0.5 tons of tephra, VEI 6
    • Global cooling: 0.5 °C,[100] Lua error in Module:Coordinates at line 668: callParserFunction: function "#coordinates" was not found.
  • March 28, 1982, El Chichón, Mexico, 2,300 tons of tephra, VEI 5
    • Lua error in Module:Coordinates at line 668: callParserFunction: function "#coordinates" was not found.
  • October 10, 1974, Volcán de Fuego, Guatemala, 400 tons of tephra, VEI 4
    • Lua error in Module:Coordinates at line 668: callParserFunction: function "#coordinates" was not found.
  • February 18, 1963, Agung, Lesser Sunda Islands, 100 tons of lava, more than 1,000 tons of tephra, VEI 5
    • Northern Hemisphere cooling: 0.3 °C,[101]Lua error in Module:Coordinates at line 668: callParserFunction: function "#coordinates" was not found.


But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up (greenhouse gases), global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down.[2]

Map gallery

See also


  1. 1.0 1.1 1.2 Robock, A., C.M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research. 114: D10107. Bibcode:2009JGRD..11410107R. doi:10.1029/2008JD011652.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. 2.0 2.1 Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways". Thin Solid Films. 517 (11): 3188–3203. Bibcode:2009TSF...517.3188W. doi:10.1016/j.tsf.2009.01.005.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29 3.30 3.31 "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Retrieved 2010-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. Retrieved 2009-12-23.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions
  6. Brantley, Steven R. (1999-01-04). Volcanoes of the United States. Online Version 1.1. United States Geological Survey. p. 30. ISBN 0-16-045054-3. OCLC 156941033 30835169 44858915 Check |oclc= value (help). Retrieved 2008-09-12.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  7. Judy Fierstein; Wes Hildreth; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98". Version 1.0. United States Geological Survey. Retrieved 2008-09-10. Cite journal requires |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology. Springer. 54 (8): 646. Bibcode:1992BVol...54..646F. doi:10.1007/BF00430778.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. "Santa Maria". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-19.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Hopkinson, Deborah (January 2004). "The Volcano That Shook the world: Krakatoa 1883". 11 (4). New York: Storyworks. Scholastic.com: 8. Cite journal requires |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. http://www.earlham.edu/~ethribe/web/tambora.htm
  12. http://www.bris.ac.uk/news/2014/september/unknown-eruption.html
  13. BBC Timewatch: "Killer Cloud", broadcast 19 January 2007
  14. Sigurdsson Haraldur, Carey S., Mandeville C. (1990). "Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano". Thera and the Aegean World III: Proceedings of the Third Thera Conference. II: 100–12.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. "Huaynaputina". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-12-29.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (5): 7–11. Bibcode:2007OGJ.....1....7N. doi:10.2174/1874262900701010007.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. Gao, Chaochao (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research. 111: D12107. Bibcode:2006JGRD..11112107G. doi:10.1029/2005JD006710. Retrieved 2010-03-19. Unknown parameter |coauthors= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  18. Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. Bibcode:2007BVol...69..301W. doi:10.1007/s00445-006-0075-4.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences of the United States of America (PNAS). doi:10.1073/pnas.1307520110. Retrieved 1 October 2013. Cite journal requires |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Miller et al. 2012. "Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks" Geophysical Research Letters 39, January 31
  22. Lavigne, Franck; et al. (2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". PNAS. 110 (42): 16742–16747. doi:10.1073/pnas.1307520110.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  23. Was the Little Ice Age Triggered by Massive Volcanic Eruptions? ScienceDaily, 30 January 2012 (accessed 21 May 2012)
  24. Jiandong Xu et al. 2013. "Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating" Geophysical Research Letters 40 http://academiccommons.columbia.edu/download/fedora_content/download/ac:162055/CONTENT/XU_et_al_2013_GRL.pdf
  25. van den Bogaard, P (1995). 40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance
  26. de Klerk et al. (2008). Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)
  27. Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research. 58 (3): 273–288. Bibcode:2002QuRes..58..273B. doi:10.1006/qres.2002.2379.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. February 2007. Retrieved January 11, 2008
  29. Carey, Steven N.; Sigurdsson, Haraldur (1980). "The Roseau Ash: Deep-sea Tephra Deposits from a Major Eruption on Dominica, Lesser Antilles Arc". Journal of Volcanology and Geothermal Research. 7 (1–2): 67–86. Bibcode:1980JVGR....7...67C. doi:10.1016/0377-0273(80)90020-7.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  30. Alloway, Brent V.; Agung Pribadi; John A. Westgate; Michael Bird; L. Keith Fifield; Alan Hogg; Ian Smith (30 October 2004). "Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra". Earth and Planetary Science Letters. Elsevier. 227 (1–2): 121. Bibcode:2004E&PSL.227..121A. doi:10.1016/j.epsl.2004.08.014.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters. American Geophysical Union. 23 (8): 837–840. Bibcode:1996GeoRL..23..837Z. doi:10.1029/96GL00706.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp 173-200
  33. 33.0 33.1 Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified" (PDF). Geology. 19 (3): 200–203. Bibcode:1991Geo....19..200C. doi:10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2. Retrieved 2010-01-20.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles> Cite error: Invalid <ref> tag; name "chesner1991" defined multiple times with different content
  34. Ninkovich, D.; N.J. Shackleton; A.A. Abdel-Monem; J.D. Obradovich; G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature. Nature Publishing Group. 276 (276): 574–577. Bibcode:1978Natur.276..574N. doi:10.1038/276574a0.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. "Guatemala Volcanoes and Volcanics". USGS - CVO. Retrieved 2010-03-13.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  36. Cities on Volcanoes 5 conference: A6: Living with Aso-Kuju volcanoes and geothermal field .
  37. "Sierra la Primavera". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-24.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  38. http://gsa.confex.com/gsa/2004AM/finalprogram/abstract_78738.htm
  39. Uzon, Global Volcanism Program, Smithsonian Institution
  40. Sruoga, Patricia; Eduardo J. Llambías; Luis Fauqué; David Schonwandt; David G. Repol (September 2005). "Volcanological and geochemical evolution of the Diamante Caldera–Maipo volcano complex in the southern Andes of Argentina (34°10′S)". Journal of South American Earth Sciences. 19 (4): 399–414. Bibcode:2005JSAES..19..399S. doi:10.1016/j.jsames.2005.06.003.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  41. Karlstrom, K.; Crow, R.; Peters, L.; McIntosh, W.; Raucci, J.; Crossey, L.; Umhoefer, P. (2007). "40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: Quantifying the interaction of river incision and normal faulting across the western edge of the Colorado Plateau". GSA Bulletin. 119 (11/12): 1283–1312. Bibcode:2007GSAB..119.1283K. doi:10.1130/0016-7606(2007)119[1283:AAFSOQ]2.0.CO;2.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  42. Hildreth, W. (1979), Sarna-Wojcicki et al. (2000).
  43. Izett, Glen A. (1981).
  44. Heiken et al. (1990).
  45. 45.0 45.1 Ben G. Mason; David M. Pyle; Clive Oppenheimer (2004). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology (PDF)|format= requires |url= (help). 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  46. Wood, Charles A.; Jűrgen Kienle (1990). Volcanoes of North America. Cambridge University Press. pp. 170–172.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  47. Geological origins, Norfolk Island Tourism. Accessed 2007-04-13.
  48. Ort, M. H.; de Silva, S.; Jiminez, N.; Salisbury, M.; Jicha, B. R. and Singer, B. S. (2009). Two new supereruptions in the Altiplano-Puna Volcanic Complex of the Central Andes.
  49. Lindsay, Jan M.; Tim J. Worthington; Ian E. M. Smith; Philippa M. Black (June 1999). "Geology, petrology, and petrogenesis of Little Barrier Island, Hauraki Gulf, New Zealand" (PDF). New Zealand Journal of Geology and Geophysics. 42 (2): 155–168. doi:10.1080/00288306.1999.9514837. Retrieved 2007-12-03.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>[dead link]
  50. Philippe Nonnotte. "Étude volcano-tectonique de la zone de divergence Nord-Tanzanienne (terminaison sud du rift kenyan) – Caractérisation pétrologique et géochimique du volcanisme récent (8 Ma – Actuel) et du manteau source – Contraintes de mise en place thèse de doctorat de l'université de Bretagne occidentale, spécialité : géosciences marines" (PDF).<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  51. Lindsay J. M., de Silva S., Trumbull R., Emmermann R., Wemmer K. (2001). "La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas". Journal of Volcanology and Geothermal Research. 106 (1–2): 145–173. Bibcode:2001JVGR..106..145L. doi:10.1016/S0377-0273(00)00270-5.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  52. Frailes Plateau
  53. 53.0 53.1 53.2 53.3 53.4 Morgan, Lisa A. Morgan; William C. McIntosh (March 2005). "Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA" (PDF). GSA Bulletin. 117 (3–4): 288–306. Bibcode:2005GSAB..117..288M. doi:10.1130/B25519.1. Retrieved 2010-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  54. Salisbury, M. J.; Jicha, B. R.; de Silva, S. L.; Singer, B. S.; Jimenez, N. C.; Ort, M. H. (21 December 2010). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province". Geological Society of America Bulletin. 123 (5–6): 821–840. doi:10.1130/B30280.1. Retrieved 29 November 2015.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  55. Geography and Geology, Lord Howe Island Tourism Association. Retrieved on 2009-04-20.
  56. "Cerro Panizos". Volcano World. Retrieved 2010-03-15.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>[dead link]
  57. Te Ara - the Encyclopedia of New Zealand
  58. 58.0 58.1 58.2 58.3 58.4 58.5 "Mark Anders: Yellowstone hotspot track". Columbia University, Lamont-Doherty Earth Observatory (LDEO). Retrieved 2010-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  59. Coombs, D. S., Dunedin Volcano, Misc. Publ. 37B, pp. 2–28, Geol. Soc. of N. Z., Dunedin, 1987.
  60. Coombs, D. S., R. A. Cas, Y. Kawachi, C. A. Landis, W. F. Mc-Donough, and A. Reay, Cenozoic volcanism in north, east and central Otago, Bull. R. Soc. N. Z., 23, 278–312, 1986.
  61. Bishop, D.G., and Turnbull, I.M. (compilers) (1996). Geology of the Dunedin Area. Lower Hutt, NZ: Institute of Geological & Nuclear Sciences. ISBN 0-478-09521-X.
  62. Sawyer, David A. (October 1994). "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension". Geological Society of America Bulletin. 106 (10): 1304–1318. Bibcode:1994GSAB..106.1304S. doi:10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2. Retrieved 2010-03-26. Unknown parameter |coauthors= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  63. 63.0 63.1 63.2 63.3 63.4 63.5 Lipman, P.W. (September 30, 1984). "The Roots of Ash Flow Calderas in Western North America: Windows Into the Tops of Granitic Batholiths". Journal of Geophysical Research. 89 (B10): 8801–8841. Bibcode:1984JGR....89.8801L. doi:10.1029/JB089iB10p08801.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  64. Rytuba, James J.; John, David A.; McKee, Edwin H. (May 3–5, 2004). "Volcanism Associated with Eruption of the Steens Basalt and Inception of the Yellowstone Hotspot". Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting. Paper No. 44-2. Retrieved 2010-03-26.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  65. 65.0 65.1 65.2 65.3 Steve Ludington, Dennis P. Cox, Kenneth W. Leonard, and Barry C. Moring (1996). Donald A. Singer (eds.). "An Analysis of Nevada's Metal-Bearing Mineral Resources". Nevada Bureau of Mines and Geology, University of Nevada Cite journal requires |journal= (help); |contribution= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: uses editors parameter (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  66. 66.0 66.1 Rytuba, J.J.; McKee, E.H. (1984). "Peralkaline ash flow tuffs and calderas of the McDermitt Volcanic Field, southwest Oregon and north central Nevada". Journal of Geophysical Research. 89 (B10): 8616–8628. Bibcode:1984JGR....89.8616R. doi:10.1029/JB089iB10p08616. Retrieved 2010-03-23.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  67. Matthew A. Coble, and Gail A. Mahood (2008). New geologic evidence for additional 16.5-15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot (PDF). Earth and Environmental Science 3. Collapse Calderas Workshop, IOP Conf. Series. doi:10.1088/1755-1307/3/1/012002. Retrieved 2010-03-23.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  68. Carson, Robert J.; Pogue, Kevin R. (1996). Flood Basalts and Glacier Floods:Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington. Washington State Department of Natural Resources (Washington Division of Geology and Earth Resources Information Circular 90).<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  69. Reidel, Stephen P. (2005). "A Lava Flow without a Source: The Cohasset Flow and Its Compositional Members". Journal of Geology. 113 (1): 1–21. Bibcode:2005JG....113....1R. doi:10.1086/425966.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  70. Brueseke, M.E. (15 March 2007). "Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited". Journal of Volcanology and Geothermal Research. 161 (3): 187–214. Bibcode:2007JVGR..161..187B. doi:10.1016/j.jvolgeores.2006.12.004. Unknown parameter |coauthors= ignored (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  71. SummitPost.org, Southeast Oregon Basin and Range
  72. USGS, Andesitic and basaltic rocks on Steens Mountain
  73. 73.0 73.1 GeoScienceWorld, Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon
  74. "Oregon: A Geologic History. 8. Columbia River Basalt: the Yellowstone hot spot arrives in a flood of fire". Oregon Department of Geology and Mineral Industries. Retrieved 2010-03-26.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  75. Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America
  76. Largest explosive eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado
  77. Olivier Bachmann; Michael A. Dungan; Peter W. Lipman (2002). "The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith". Journal of Petrology. 43 (8): 1469–1503. doi:10.1093/petrology/43.8.1469. Retrieved 2010-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  78. 78.0 78.1 Ingrid Ukstins Peate; Joel A. Baker; Mohamed Al-Kadasi; Abdulkarim Al-Subbary; Kim B. Knight; Peter Riisager; Matthew F. Thirlwall; David W. Peate; Paul R. Renne; Martin A. Menzies (2005). "Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen". Bulletin of Volcanology. 68 (2): 135–156. Bibcode:2005BVol...68..135P. doi:10.1007/s00445-005-0428-4.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>.
  79. 79.0 79.1 Crustal recycling during subduction at the Eocene Cordilleran margin of North America Retrieved on 2007-06-26 Cite error: Invalid <ref> tag; name "SI" defined multiple times with different content
  80. Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillot & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113-140
  81. Muskox Property - The Muskox Intrusion
  82. The 1.27 Ga Mackenzie Large Igneous Province and Muskox layered intrusion
  83. "Westward Migrating Ignimbrite Calderas and a Large Radiating Mafic Dike Swarm of Oligocene Age, Central Rio Grande Rift, New Mexico: Surface Expression of an Upper Mantle Diapir?" (PDF). New Mexico Tech. Retrieved 2010-03-21.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  84. Fialko, Y., and M. Simons, Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging Geop. Res. Lett., 28, 3549-3552, 2001.
  85. "Socorro Magma Body". New Mexico Tech. Retrieved 2010-03-21.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  86. "Figure: Calderas within southwestern Nevada volcanic field". Los Alamos National Laboratory. Retrieved 2010-03-16.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  87. Smith, E.I., and D.L. Keenan (30 August 2005). "Yucca Mountain Could Face Greater Volcanic Threat" (PDF). Eos, Transactions, American Geophysical Union. 86 (35). doi:10.1029/2005eo350001. Retrieved 1/3/09. Check date values in: |accessdate= (help)CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  88. Geologic Provinces of the United States: Basin and Range Province on USGS.gov website Retrieved 9 November 2009
  89. Doell, R.R., Dalrymple, G.B., Smith, R.L., and Bailey, R.A., 1986, Paleomagnetism, potassium-argon ages, and geology of rhyolite and associated rocks of the Valles Caldera, New Mexico: Geological Society of America Memoir 116, p. 211-248.
  90. Izett, G.A., Obradovich, J.D., Naeser, C.W., and Cebula, G.T., 1981, Potassium-argon and fission-track ages of Cerro Toledo rhyolite tephra in the Jemez Mountains, New Mexico, in Shorter contributions to isotope research in the western United States: U.S. Geological Survey Professional Paper 1199-D, p. 37-43.
  91. Christiansen, R.L., and Blank, H.R., 1972, Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park: U.S. Geological Survey Professional Paper 729-B, p. 18.
  92. Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr" (PDF). Quaternary Research. 67: 57–68. Bibcode:2007QuRes..67...57S. doi:10.1016/j.yqres.2006.07.004. Retrieved 2010-03-18.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  93. "VEI glossary entry". USGS. Retrieved 2010-03-30.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  94. "Volcanic Sulfur Aerosols Affect Climate and the Earth's Ozone Layer - Volcanic ash vs sulfur aerosols". U.S. Geological Survey. Retrieved 2010-04-21.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  95. http://earthobservatory.nasa.gov/IOTD/view.php?id=38975 Earth Observatory - Sarychev Eruption
  96. Jones, M.T., Sparks, R.S.J., and Valdes, P.J. (2007). "The climatic impact of supervolcanis ash blankets". Climate Dynamics. 29 (6): 553–564. Bibcode:2007ClDy...29..553J. doi:10.1007/s00382-007-0248-7.CS1 maint: multiple names: authors list (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  97. Jones, G.S., Gregory, J.M., Scott, P.A., Tett, S.F.B., Thorpe, R.B., 2005. An AOGCM model of the climate response to a volcanic super-eruption. Climate Dynamics 25, 725-738
  98. Dai, Jihong; Ellen Mosley-Thompson; Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research (Atmospheres). 96 (D9): 17, 361–17, 366. doi:10.1029/91jd01634.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  99. http://www.esrl.noaa.gov/gmd/grad/mloapt.html Atmospheric transmission of direct solar radiation (Preliminary) at Mauna Loa, Hawaii
  100. "Mt. Pinatubo's cloud shades global climate". Science News. Retrieved 2010-03-07.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  101. Jones, P.D., Wigley, T.M.I, and Kelly, P.M. (1982), Variations in surface air temperatures: Part I. Northern Hemisphere, 1881-1980: Monthly Weather Review, v.110, p. 59-70.

Further reading

External links