Tree planting

From Infogalactic: the planetary knowledge core
(Redirected from Treeplanting)
Jump to: navigation, search
A treeplanter in northern Ontario.
Tree planting is an aspect of habitat conservation. In each plastic tube a hardwood tree has been planted.

Tree planting is the process of transplanting tree seedlings, generally for forestry, land reclamation, or landscaping purposes. It differs from the transplantation of larger trees in arboriculture, and from the lower cost but slower and less reliable distribution of tree seeds.

In silviculture the activity is known as reforestation, or afforestation, depending on whether the area being planted has or has not recently been forested. It involves planting seedlings over an area of land where the forest has been harvested or damaged by fire or disease or insects. Tree planting is carried out in many different parts of the world, and strategies may differ widely across nations and regions and among individual reforestation companies. Tree planting is grounded in forest science, and if performed properly can result in the successful regeneration of a deforested area. Reforestation is the commercial logging industry's answer to the large-scale destruction of old growth forests, but a planted forest rarely replicates the biodiversity and complexity of a natural forest.[citation needed]

Because trees remove carbon dioxide from the air as they grow, tree planting can be used as a geoengineering technique to remove CO2 from the atmosphere. Desert greening projects are also motivated by improved biodiversity and reclamation of natural water systems, but also improved economy and social walfare due to increased number of jobs in farming and forestry.

By country

Australia

Australian forests have been heavily affected since European colonisation, and some attempts have been made to restore native habitats, both by government and individuals. Greening Australia is a national Non profit set up to run the "National Tree Program" initiated by the Federal Government in 1982.[1] Greening Australia completed the 1 Billion Tree target and has gone on to become one of the major tree planting organisations in the country. There is a strong volunteer movement for conservation in Australia through Landcare and other networks. National Tree Day is organised annually by Planet Ark in the last week in July, encouraging the public to plant 1 million native trees per year. Many state governments run their own "Million Tree" programs each year to encourage community involvement.[2][3]

Canada

Most tree planting in Canada is carried out by private reforestation companies.[4] Reforestation companies compete with one another for contracts from logging companies, whose annual allowable cut for the following year is based upon how much money they invest into reforestation and other silvicultural practices. Treeplanting is typically piece work and tree prices can vary widely depending on the difficulty of the terrain and on the winning contract's bid price. As a result, there is a saying among planters: "There is no bad land, only bad contracts." 4 months of hard work can yield enough to live on for an entire year, but conditions are brutal.[4]

Tree planting crews often do not permanently reside in the areas where they work, thus much planting is based out of motels or bush camps. Bush camp accommodations usually consist of a mess tent, cook shack, dry goods tent, first aid tent, freshly dug outhouses, and a shower tent or trailer. Planters are responsible for bringing either a tent or car to sleep in. A camp also contains camp cooks and support staff.[4]

Planting is carried out in accordance to the client's specifications, and planters are expected to learn the quality standards for each contract that they work on. Planted clearcuts are spot checked on a regular basis. Although quality concerns vary across contracts, spot checkers are typically looking for such things as: species appropriate site choice, species appropriate spacing, how tight the seedlings are in the ground, how straight the seedlings are, and whether or not the seedlings have been damaged. These concerns vary from region to region, and from contract to contract.

The average British Columbian planter plants 1 600 trees per day,[5] but it is not uncommon for veterans to plant up to 4,000 trees per day while working in the interior.[4] These numbers are higher in central and eastern Canada, where the terrain is generally faster, however the price per tree is slightly lower as a result. Average daily totals of 2500 are common, with experienced planters planting upwards of 5000 trees a day. Numbers as high as 7500 a day have been recorded.[4] Planters typically work 8–10 hours per day with an additional 1 to 2 hours of (usually) unpaid traveling time. Work weeks on British Columbian planting contracts are usually 4–5 days long, with 1–2 days off. In Ontario, work weeks are generally 5–6 days long, with 1 day off.

Quite often, tree planting contractors will deduct some of the cost associated with the operation of the contract directly from the tree planter's daily earned wages. These imposed fees typically vary from $10 to $30 per day, and are referred to as "camp costs". In some cases, rookie tree planters end up owing their employer money for the first few pay periods.[6]

Once inflation is factored in, real tree planter earnings have declined for many years in Canada. This has adversely affected the sector's ability to attract and retain workers.[7] Higher wages and much better working conditions in many other industries, from construction, to oil and gas, and even information technology, has led to fewer Canadian young people wanting to plant trees.

Based on statistics for British Columbia, the average tree planter: lifts a cumulative weight of over 1,000 kilograms (2,200 lb), bends more than 200 times per hour, drives the shovel into the ground more than 200 times per hour and travels over 16 kilometres (9.9 mi) with a heavy load, every day of the entire season. The reforestation industry has an average annual injury rate of approximately 22 claims per 100 workers, per year. It is often difficult and sometimes dangerous.[5]

Great Britain

Planting in Britain is commonly referred to as restocking, when it takes place on land that has recently been harvested. When occurring on previously unforested land it is known as new planting.[8] Under the British system, in order to acquire the necessary permissions to clearcut, the landowner must agree a management plan with the Forestry Commission (the regulatory body for all things forestry) which must include proposals for the re-establishment of tree cover on the land. Planting contractors will be engaged by the landowner/management company, a contract drawn up and work will typically take place from November to April when most of the transplants are dormant.

Planting is part of the rotational nature of much British plantation forestry. Productive tree crops are planted and subsequently clearcut. Some form of soil cultivation may take place and the ground is then restocked. Where the production of timber is a management priority, a prescribed stocking density must be achieved. For coniferous species this will be a minimum of 2500 stems per hectare at year 5 (from planting). Planting at this density has been shown to favour the development of straighter knot-free logs.

Planters are normally paid under piece work terms and an experienced worker will plant around 1500 trees a day under most conditions.

Israel

Tree-planting is an ancient Jewish tradition. The Talmudic rabbi Yohanan ben Zakai used to say that if a person planting a tree heard that the Messiah had arrived, he should finish planting before going to greet him.[9] With over 240 million planted trees, Israel is one of only two countries that entered the 21st century with a net gain in the number of trees. Due to massive afforestation efforts,[10] this fact echoed in diverse campaigns.[11][12] Israeli forests are the product of a major afforestation campaign by the Jewish National Fund (JNF).[13]

The largest planted forest in Israel is Yatir Forest, located on the southern slopes of Mount Hebron, on the edge of the Negev Desert. It covers an area of 30,000 dunams (30 square kilometers).[14] It is named after the ancient Levite city within its territory, Yatir, as written in the Torah: "And unto the children of Aaron the priest they gave Hebron with its suburbs, the city of refuge for the manslayer, and Libnah with its suburbs, and Jattir with its suburbs, and Eshtemoa with its suburbs" (Book of Joshua 21:13-14).[15] In 2006, the JNF signed a 49-year lease agreement with the State of Israel which gives it control over 30,000 hectares of Negev land for the development of forests.[16] Research on climate change is being carried out in Yatir Forest.[17][18] Studies of the Weizmann Institute of Science, in collaboration with the Desert Research Institute at Sde Boker, have shown that the trees function as a trap for carbon in the air.[19][20] Shade provided by trees planted in the desert also reduces evaporation of the sparse rainfall.[19] Yatir Forest is a part of the NASA project FluxNet, a global network of micrometeorological tower sites used to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystem and atmosphere. The Arava Institute for Environmental Studies conducts research that focuses on crops such as dates and grapes grown in the vicinity of Yatir forest.[21][22] The research is part of a project aimed at introducing new crops into arid and saline zones.[23]

The JNF has been criticized for planting non-native pine trees which are unsuited to the climate, rather than local species such as olive trees.[24] Others say that JNF deserves credit for this decision, and the forests would not have survived otherwise.[25][better source needed] According to JNF statistics, six out of every 10 saplings planted at a JNF site in Jerusalem do not survive, although the survival rate for planting sites outside Jerusalem is much higher – close to 95 percent. Critics argue that many JNF lands outside the West Bank were illegally confiscated from Palestinian refugees, and that the JNF furthermore should not be involved with lands in the West Bank.[26] Shaul Ephraim Cohen has claimed that trees have been planted to restrict Bedouin herding.[27] Susan Nathan wrote that forests were planted on the site of abandoned Arab villages after the 1948 war.[28] Nathan also writes that olive trees were replaced by pine and cypress trees[29] and that JNF afforestation policy erases traces of the Arab presence prior to 1948.[30]

Since 2009, the JNF has provided the Palestinian Authority with 3,000 tree seedlings for a forested area being developed on the edge of the new city of Rawabi, north of Ramallah.[31]

Approximately one thousand small forest fires are registered on average every year during the five fire-prone months. Half of them are caused by arson, hostile actions and Arab or Palestinian terrorist attacks. Ten thousand acres of hand-planted forest were destroyed by Katyusha rockets during the 2006 Lebanon War by Hezbollah. In summer 2006, JNF launched Operation Northern Renewal, a reforestation effort, which also replaced some topsoil that was burned away.[32]

New Zealand

Kaingaroa Forest in New Zealand is the largest planted forest in the southern hemisphere. It is one of the many plantation forests planted since European settlement. The Monterey Pine (Pinus radiata) is commonly used for plantations since a fast-growing cultivar suitable for a wide range of conditions has been developed.

Government agencies, environmental organisations and private trusts carry out tree planting for conservation and climate change mitigation. While some work is carried out by private enterprise, there are also planting days organised for volunteers. Landcare Research use planted forests for their EBEX21 system for greenhouse gas emissions mitigations.[33]

South Africa

South Africa's forests have been heavily depleted mostly due to agriculture, traditional farming and urbanisation in the coastal regions, various organizations are working on increasing the forest cover in parts of the country. Currently there is less than 0.5% forest cover in South Africa. Greenpop is a national Social Enterprise set up to run a "Tree Planting Program" greening both urban and rural areas. This was initiated in 2010. There is a strong volunteer movement for conservation in South Africa. National Tree Day or Arbor Day is organised annually in September, and has gone on to become national Arbor Month.

United States

Trees for the Future and Plant With Purpose are non-profit organizations based in the U.S. that plant trees in developing countries to improve land management.[34][35] Other organizations that plant trees in the United States include:

Role in climate change

The development of markets for tradeable pollution permits in recent years have opened up a new source of funding for tree planting projects: carbon offsets. The creation of carbon offsets from tree planting projects hinges on the notion that trees help to mitigate climate change by sequestering carbon dioxide as they grow. However, the science linking trees and climate change is largely unsettled, and trees remain a controversial source of offsets.

Climate impacts

Climate scientists working for the IPCC believe human-induced global deforestation is responsible for 18-25% of global climate change. The United Nations, World Bank and other leading nongovernmental organizations are encouraging tree planting to mitigate the effects of climate change.

Trees sequester carbon through photosynthesis, converting carbon dioxide and water into molecular dioxygen (O2) and plant organic matter, such as carbohydrates (e.g., cellulose). Hence, forests that grow in area or density and thus increase in organic biomass will reduce atmospheric CO2 levels. (Carbon is released as CO2 if a tree or its lumber burns or decays, but as long as the forest is able to grow back at the same rate as its biomass is lost due to oxidation of organic carbon, the net result is carbon neutral.) In their 2001 assessment, the IPCC estimated the potential of biological mitigation options (mainly tree planting) is on the order of 100 Gigatonnes of carbon (cumulative) by 2050, equivalent to about 10% to 20% of projected fossil fuel emissions during that period.[40]

However, the global cooling effect of forests from carbon sequestration is not the only factor to be considered. For example, the planting of new forests may initially release some of the area's existing carbon stores into the atmosphere. Specifically, the conversion of peat bogs into oil palm plantations has made Indonesia the world's third largest producer of greenhouse gases.[41]

Compared to less vegetated lands, forests affect climate in three main ways:

  • Cooling the Earth by functioning as carbon sinks, and adding water vapor to the atmosphere and thereby increasing cloudiness.
  • Warming the Earth by absorbing a high percentage of sunlight due to the low reflectivity of a forest's dark surfaces. This warming effect, or reduced albedo, is large where evergreen forests, which have very low reflectivity, shade snow cover, which is highly reflective.

To date, most tree planting offsets strategies have taken only the first effect into account. A study published in December 2005 combined all these effects and found that tropical forestation has a large net cooling effect, because of increased cloudiness and because of high tropical growth and carbon sequestration rates.[42]

Trees grow three times faster in the tropics than in temperate zones; each tree in the rainy tropics removes about 22 kilograms (50 pounds) of carbon dioxide from the atmosphere each year.[43] However, this study found little to no net global cooling from tree planting in temperate climates, where warming due to sunlight absorption by trees counteracts the global cooling effect of carbon sequestration. Furthermore, this study confirmed earlier findings that reforestation of colder regions — where long periods of snow cover, evergreen trees, and slow sequestration rates prevail — probably results in global warming. According to Ken Caldeira, a study co-author from the Carnegie Institution for Science, "To plant forests outside of the tropics to mitigate climate change is a waste of time.".[44]

His premise that grassland reflects more sun, keeping temperatures lower, is, however, applicable only in arid regions. A well-watered lawn, for example, is as green as a tree, but absorbs far less CO2.[citation needed] Deciduous trees also have the advantage of providing shade in the summer and sunlight in the winter; so these trees, when planted close to houses, can be utilized to help increase energy efficiency of these houses.

This study remains controversial and criticized for assuming dark colored trees might replace the frozen, white tundra in the upper northern hemisphere. Regular tree planting projects typically take place on lands that are only slightly different in color. The warming impact was also measured over hundreds of years, rather than a 30-70 year time horizon most climate experts believe we have to fix climate change.

Furthermore, the described warming effect (of temperate and boreal latitude forest) is only apparent once the trees have grown to create a dense 'close canopy', and it is at precisely this point that trees grown for offset purposes should be harvested and their absorbed carbon fixed for the long-term as timber.

Costs

While the benefits of tree planting are subject to debate, the costs are low[45] compared to many other mitigation options. The IPCC has concluded that "The mitigation costs through forestry can be quite modest (US$0.1–US$20 / metric ton carbon dioxide) in some tropical developing countries.... The costs of biological mitigation, therefore, are low compared to those of many other alternative measures".[40] The cost effectiveness of tropical reforestation is due not only to growth rate, but also to farmers from tropical developing countries who voluntarily plant and nurture tree species which can improve the productivity of their lands.[46] As little as US$90 will plant 900 trees, enough to annually remove as much carbon dioxide as is annually generated by the fossil-fuel usage of an average United States resident.

Types of trees planted

A eucalyptus plantation in final stages at Arimalam.

The type of tree planted may have great influence on the environmental outcomes. It is often much more profitable to outside interests to plant fast-growing species, such as eucalyptus, casuarina or pine (e.g., Pinus radiata or Pinus caribaea), even though the environmental and biodiversity benefits of such monoculture plantations are not comparable to native forest, and such offset projects are frequently objects of controversy.

To promote the growth of native ecosystems, many environmentalists advocate only indigenous trees be planted. A practical solution is to plant tough, fast-growing native tree species which begin rebuilding the land. Planting non-invasive trees that assist in the natural return of indigenous species is called "assisted natural regeneration." There are many such species that can be planted, of which about 12 are in widespread use, such as Leucaena leucocephala.[47] Alternatively, farmer-managed natural regeneration (FMNR), involves farmers preserving trees (not replanting), and is considered to be a more cost effective method of reforestation than regular tree planting.

See also

<templatestyles src="Div col/styles.css"/>

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 4.2 4.3 4.4 Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 Lua error in package.lua at line 80: module 'strict' not found.
  6. [1] Archived November 20, 2008 at the Wayback Machine
  7. Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. Lua error in package.lua at line 80: module 'strict' not found.
  16. Professor Alon Tal, The Mitrani Department of Desert Ecology, The Blaustein Institutes for Desert Research, Ben Gurion University of the Negev."NATIONAL REPORT OF ISRAEL, Years 2003-2005, TO THE UNITED NATIONS CONVENTION TO COMBAT DESERTIFICATION (UNCCD)"; State of Israel, July 2006
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. 19.0 19.1 Lua error in package.lua at line 80: module 'strict' not found.
  20. KKL-JNF cooperating on afforestation at Yatir forest
  21. Vu du Ciel-documentary by Yann Arthus-Bertrand Archived October 14, 2009 at the Wayback Machine
  22. Lua error in package.lua at line 80: module 'strict' not found.
  23. MERC Project M-20-0-18 project
  24. Rabbi David Seidenberg."The Giving Tree: A Way to Honor Our Vision for Israel"; Neohasid, 2006
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Dan Leon."The Jewish National Fund: How the Land Was ‘Redeemed’: The JNF’s historical concept of exclusively Jewish land is wholly anachronistic"; Palestine-Israel Journal, Vol 12 No. 4 & Vol 13 No. 1, 05/06
  27. Shaul Ephraim Cohen. "The Politics of Planting"; University of Chicago 1993 p.121
  28. Nathan, Susan (2005). The Other Side of Israel: My Journey Across the Jewish/Arab Divide. New York: Nan A. Talese. pp. 130–131. ISBN 978-0-385-51456-9.
  29. Nathan, Susan (2005) op cit pages 129–130
  30. Nathan, Susan (2005) op cit pages 151–152
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Lua error in package.lua at line 80: module 'strict' not found.
  33. EBEX21, Carbon Credits System
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. "Replanting," Arbor Day Foundation.
  37. Plant-it 2020
  38. "Plant-A-Tree" program, USDA Forest Service
  39. Our City Forest
  40. 40.0 40.1 Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.
  45. [2]
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.

External links