Ultra-high-definition television

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Comparison of 8K UHDTV, 4K UHDTV, HDTV and SDTV resolution
Diagram of the CIE 1931 color space that shows the Rec. 2020 (UHDTV) color space in the outer triangle and Rec. 709 (HDTV) color space in the inner triangle. Both Rec. 2020 and Rec. 709 use Illuminant D65 for the white point.
File:Ultra HD Premium Logo by the UHD Alliance.jpg
Ultra HD Premium logo by the UHD Alliance for certified Ultra HD televisions

Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD, UHD-1, Super Hi-Vision, and 2160p) today includes 4K UHD (2160p) and 8K UHD (4320p), which are two digital video formats that were first proposed by NHK Science & Technology Research Laboratories and later defined and approved by the International Telecommunication Union (ITU).[1][2][3][4]

The "UHD Alliance", an industry consortium of content creators, distributors, and hardware manufacturers, announced during CES 2016 press conference its "Ultra HD Premium" specification, which defines resolution, bit depth, color gamut, high-dynamic-range imaging (HDRI) and rendering (HDRR) required for Ultra HD (UHDTV) content and displays to carry their Ultra HD Premium logo (seen to the right).[5][6][7][8][9]

The Consumer Electronics Association also announced on October 17, 2012, that "Ultra High Definition", or "Ultra HD", would be used for displays that have an aspect ratio of 16:9 and at least one digital input capable of carrying and presenting native video at a minimum resolution of 3840×2160 pixels.[10][11]

Alternative terms

Ultra-high-definition television is also known as Ultra HD, UHD, and UHDTV.[12][13][14][15][16] In Japan, 8K UHDTV will be known as Super Hi-Vision since Hi-Vision was the term used in Japan for HDTV.[17][18] In the consumer electronics market companies had previously only used the term 4K at the 2012 CES but that had changed to "Ultra HD" during the 2013 CES.[15][16] The "Ultra HD" term is an umbrella term that was selected by the Consumer Electronics Association after extensive consumer research, as the term has also been established with the introduction of "Ultra HD Blu-ray".[19]

Technical details

Super Hi-Vision specifications:[17][18][20][21]

  • Number of pixels: 7680x4320
  • Aspect ratio: 16:9
  • Viewing distance: 0.75 H
  • Viewing angle: 180°
  • Colorimetry: Rec. 2020
  • Frame rate: 120 Hz progressive
  • Bit depth: 12-bits per color RGB
  • Audio system: 22.2 surround sound
    • Sampling rate: 96,192 kHz
    • Bit length: 24 bit
    • Number of channels: 24 ch
      • Upper layer: 9 ch
      • Middle layer: 10 ch
      • Lower layer: 3 ch
      • LFE: 2 ch
  • Compressed bit rate: 150 Mbit/s (H.265)HEVC
  • Uncompressed
    video bit rate: 48 Gbit/s[22]

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Resolution

Two resolutions are defined as UHDTV:[12][13][14]

  • 4K UHDTV (2160p) is 3840 pixels wide by 2160 pixels tall (8.29 megapixels), which is four times as many pixels as 1920x1080 (2.07 megapixels).
  • 8K UHDTV (4320p) is 7680 pixels wide by 4320 pixels tall (33.18 megapixels), which is sixteen times as many pixels and four times the spatial resolution of current 1080p HDTV, which brings it closer to the detail level of 15/70 mm IMAX.[13][23][24] NHK advocates the 8K UHDTV format with 22.2 surround sound as Super Hi-Vision.

The suffix "p" in 2160p and 4320p stands for progressive scan or non-interlaced.

Color space, dynamic range, and frame rate

The human visual system has a limited ability to discern improvements in resolution when picture elements are small enough and/or distant enough from the viewer that they are not resolved by the eye. At current consumer home viewing distances and TV sizes, increasing resolution to 4K may have little perceptual impact, as consumers would not be close enough (the Lechner distance) to appreciate the differences in pixel count between 4K and HD. UHDTV also allows other image enhancements in dynamic range and color, which can improve the perceived difference between 4KTV and HDTV. UHDTV allows the future use of the new Rec. 2020 (UHDTV) color space which can reproduce colors that cannot be shown with the current Rec. 709 (HDTV and most current 4KTV) color space.[17]

When dealing with CIE 1931 color space coverage, the Rec. 2020 color space covers 75.8%, whereas the digital cinema reference projector color space covers 53.6%, the Adobe RGB color space covers 52.1%, and the Rec. 709 color space covers 35.9%.[17] UHDTV also allows for an increase in dynamic range, meaning brighter highlights but also increased detail in the greyscale. UHDTV also allows for frame rates up to 120 frames per second (fps).[14][25] Note that UHDTV potentially allows Rec.2020, higher dynamic range and higher frame rates to be applied to HD services, without necessarily increasing resolution to 4K.

History

Lua error in package.lua at line 80: module 'strict' not found.

2001–2005

File:Fuji UHDTV prototype camera, 2006.jpg
Prototype camera head (2006)
File:8K Camera (2009 version).jpg
Prototype camera head (2009)

IBM introduced the first UHDTV production monitor, the IBM T220, in June 2001 with a 3840x2400 native format.[26] It was manufactured by IDTech. Improved follow-on models with IBM T221 as the base model number, were introduced in the following years.

NHK researchers built their own UHDTV prototype which they demonstrated in 2003.[27] They used an array of 16 HDTV recorders with a total capacity of almost 3.5 TB that could capture up to 18 minutes of test footage.[27] The camera itself was built with four 2.5 inch (64 mm) CCDs, each with a resolution of only 3840x2048.[27] Using two CCDs for green and one each for red and blue, they then used a spatial pixel offset method to bring it to 7680x4320.[27][lower-alpha 1] Subsequently, an improved and more compact system was built using CMOS image sensor technology[28] and the CMOS image sensor system was demonstrated at Expo 2005, Aichi, Japan, the NAB 2006 and NAB 2007 conferences, Las Vegas, at IBC 2006 and IBC 2008,[29] Amsterdam, Netherlands, and CES 2009. A review of the NAB 2006 demo was published in a Broadcast Engineering e-newsletter.[30] Individuals at NHK and elsewhere project that the timeframe for UHDTV to be available in domestic homes varies between 2015 and 2020 but Japan may get it in the 2016 time frame.[31]

2006-2010

On November 2, 2006, NHK demonstrated a live relay of a UHDTV program over a 260 kilometer (km) distance by a fiber-optic network.[32] Using dense wavelength division multiplex (DWDM), 24 Gbit/s speed was achieved with a total of 16 different wavelength signals.[32]

On December 31, 2006, NHK demonstrated a live relay of their annual Kōhaku Uta Gassen over IP from Tokyo to a 450 in (11.4 m) screen in Osaka. Using a codec developed by NHK, the video was compressed from 24 Gbit/s to 180–600 Mbit/s and the audio was compressed from 28 Mbit/s to 7–28 Mbit/s.[33] Uncompressed, a 20-minute broadcast would require roughly 4 TB of storage.

The SMPTE first released Standard 2036 for UHDTV in 2007.[34] UHDTV was defined as having two levels called UHDTV1 (3840×2160 or 4K UHDTV) and UHDTV2 (7680x4320 or 8K UHDTV).[34][35]

In May 2007, the NHK did an indoor demonstration at the NHK Open House in which a UHDTV signal (7680x4320 at 60 fps) was compressed to a 250 Mbit/s MPEG2 stream.[36] The signal was input to a 300 MHz wide band modulator and broadcast using a 500 MHz QPSK modulation.[36] This "on the air" transmission had a very limited range (less than 2 meters), but shows the feasibility of a satellite transmission in the 36,000 km orbit.[36]

In 2008, Aptina Imaging announced the introduction of a new CMOS image sensor specifically designed for the NHK UHDTV project.[37] During IBC 2008 Japan's NHK, Italy's RAI, BSkyB, Sony, Samsung, Panasonic Corporation, Sharp Corporation, and Toshiba (with various partners) demonstrated the first ever public live transmission of UHDTV, from London to the conference site in Amsterdam.[38][39]

On September 29, 2010, the NHK partnered up and recorded The Charlatans live in the UK in the UHDTV format, before broadcasting over the internet to Japan.[40]

2011

On May 19, 2011, SHARP in collaboration with NHK demonstrated a direct-view 85 in (220 cm) LCD display capable of 7680×4320 pixels at 10 bits per pixel.[41] It was the first direct-view Super Hi-Vision-compatible display to be released.[42]

Before 2011, UHDTV allowed for frame rates of 24, 25, 50, and 60 fps.[35] In an ITU-R meeting during 2011, an additional frame rate was added to UHDTV of 120 fps.[43]

2012

On February 23, 2012, NHK announced that with Shizuoka University they had developed an 8K sensor that can shoot video at 120 fps.[44][45][46]

In April 2012, NHK (in collaboration with Panasonic) announced a 145 in (370 cm) display (7680×4320 at 60 fps), which has 33.2 million 0.417 mm square pixels.[47]

In April 2012, the four major Korean terrestrial broadcasters (KBS, MBC, SBS, and EBS) announced that in the future, they would begin test broadcasts of UHDTV on channel 66 in Seoul.[48][49] At the time of the announcement, the UHDTV technical details had not yet been decided.[48][49] LG Electronics and Samsung will also be involved in the test broadcasts of UHDTV.[49]

In May 2012, NHK showed the world's first ultra-high-definition shoulder-mount camera.[50] By reducing the size and weight of the camera, the portability had been improved, making it more maneuverable than previous prototypes, so it can be used in a wide variety of shooting situations.[50] The single-chip sensor uses a Bayer color-filter array, where only one color component is acquired per pixel.[50] Researchers at NHK have also developed a high-quality up-converter, which estimates the other two-color components to convert the output into full resolution video.[50]

Also in May 2012, NHK showed the ultra-high-definition imaging system it has developed in conjunction with Shizuoka University, which outputs 33.2-megapixel video at 120 fps with a color depth of 12 bits.[51][52] As ultra-high-definition broadcasts at full resolution are designed for large, wall-sized displays, there is a possibility that fast-moving subjects may not be clear when shot at 60 fps, so the option of 120 fps has been standardized for these situations.[51] To handle the sensor output of approximately 4 billion pixels per second with a data rate as high as 51.2 Gbit/s, a faster analog-to-digital converter has been developed to process the data from the pixels, and then a high-speed output circuit distributes the resulting digital signals into 96 parallel channels.[51] This 1.5 in (38 mm) CMOS sensor is smaller and uses less power when compared to conventional ultra-high-definition sensors, and it is also the world's first to support the full specifications of the ultra-high-definition standard.[51]

During the 2012 Summer Olympics in Great Britain, the format was publicly showcased by the world's largest broadcaster, the BBC,[53] which set up 15 meter wide screens in London, Glasgow, and Bradford to allow viewers to see the Games in ultra-high definition.[54][55]

On May 31, 2012,[56] Sony released the VPL-VW1000ES 4K 3D Projector,[57] the world's first consumer-prosumer projector using the 4K UHDTV system, with the shutter-glasses stereoscopic 3D technology priced at US$24,999.99.[58][59]

On August 22, 2012, LG announced the world's first 3D UHDTV using the 4K system.[60]

On August 23, 2012, UHDTV was officially approved as a standard by the International Telecommunication Union (ITU), standardizing both 4K and 8K resolutions for the format in ITU-R Recommendation BT.2020.[25][61]

On September 15, 2012, David Wood, Deputy Director of the EBU Technology and Development Department (who chairs the ITU working group that created Rec. 2020), told The Hollywood Reporter that Korea plans to begin test broadcasts of 4K UHDTV next year.[62][63][64] Wood also said that many broadcasters have the opinion that going from HDTV to 8K UHDTV is too much of a leap and that it would be better to start with 4K UHDTV.[62] In the same article Masakazu Iwaki, NHK Research senior manager, said that the NHK plan to go with 8K UHDTV is for economic reasons since directly going to 8K UHDTV would avoid an additional transition from 4K UHDTV to 8K UHDTV.[62]

On October 18, 2012, the Consumer Electronics Association (CEA) announced that it had been unanimously agreed on by a vote of the CEA's Board of Industry Leaders that the term "Ultra High-Definition", or "Ultra HD", would be used for displays that have a resolution of at least 8 megapixels with a vertical resolution of at least 2,160 pixels and a horizontal resolution of at least 3,840 pixels.[65][66][67][68] The Ultra HD label also requires the display to have an aspect ratio of at least 16x9 and to have at least one digital input that can carry and present a native video signal of 3840x2160 without having to rely on a video scaler.[65][66][67][68] Sony announced that their 4K products will be marketed as "4K Ultra High-Definition (4K UHD)".[69]

On October 23, 2012, Ortus Technology Co., Ltd announced the development of the world's smallest 3840x2160 pixel LCD panel with a size of 9.6 in (24 cm) and a pixel density of 458ppi.[70][71][72] The LCD panel is designed for medical equipment and professional video equipment.[70][71][72]

On October 25, 2012, LG Electronics began selling the first flat panel Ultra HD display in the United States with a resolution of 3840x2160.[73][74][75] The LG 84LM9600 is a 84 in (210 cm) flat panel LED-backlit LCD display with a price of US$19,999 though the retail store was selling it for US$16,999.[73][74][75]

On November 29, 2012, Sony announced the 4K Ultra HD Video Player, which is a hard disk server preloaded with ten 4K movies and several 4K video clips that will be included with the Sony XBR-84X900.[76][77][78] The preloaded 4K movies will be The Amazing Spider-Man, Total Recall (2012), The Karate Kid (2010), Salt, Battle: Los Angeles, The Other Guys, Bad Teacher, That's My Boy, Taxi Driver, and The Bridge on the River Kwai.[76][77][78] Additional 4K movies and 4K video clips will be offered for the 4K Ultra HD Video Player in the future .[76][77][78]

On November 30, 2012, Red Digital Cinema Camera Company announced that they were taking pre-orders for the US$1,450 REDRAY 4K Cinema Player which is capable of outputting 4K resolution to a single 4K display or to four 1080p displays arranged in any configuration and connected using four HDMI 1.4 connections.[79][80] Video output can be 4K DCI (4096x2160), 4K Ultra HD, 1080p, and 720p at frame rates of up to 60 fps with a bit depth of up to 12-bits with 4:2:2 chroma subsampling.[79] Audio output can be up to 7.1 channels.[79] Content will be distributed online using the ODEMAX video service.[79] External storage can be connected using eSATA, Ethernet, USB, or a Secure Digital memory card.[79]

2013

On January 6, 2013, the NHK announced that Super Hi-Vision satellite broadcasts could begin in Japan in 2016.[81]

On January 7, 2013, Eutelsat announced the first dedicated 4K Ultra HD channel.[82][83][84][85] Ateme uplinks the H.264/MPEG-4 AVC channel to the EUTELSAT 10A satellite.[82][83][84][85] The 4K Ultra HD channel has a frame rate of 50 fps and is encoded at 40 Mbit/s.[82][83][84][85] The channel started transmission on January 8, 2013.[82][83][84][85] On the same day Qualcomm CEO Paul Jacobs announced that mobile devices capable of playing and recording 4K Ultra HD video will be released in 2013[needs update] using the Snapdragon 800 chip.[86][87][88]

On January 8, 2013, Broadcom announced the BCM7445 which is an Ultra HD decoding chip capable of decoding High Efficiency Video Coding (HEVC) at up to 4096x2160p at 60 fps.[89][90][91][92] The BCM7445 is a 28 nm ARM architecture chip capable of 21,000 Dhrystone MIPS with volume production estimated for the middle of 2014.[89][90][91][92] On the same day THX announced the "THX 4K Certification" program for Ultra HD displays.[93][94][95] The certification involves up to 600 tests and the goal of the program is so that "content viewed on a THX Certified Ultra HD display meets the most exacting video standards achievable in a consumer television today".[93][94][95]

On January 14, 2013, Blu-ray Disc Association president Andy Parsons stated that a task force created three months ago is studying an extension to the Blu-ray Disc specification that would add support for 4K Ultra HD video.[96][97]

On January 25, 2013, the BBC announced that the BBC Natural History Unit will produce Survival which will be the first wildlife TV series to be filmed in 4K resolution. This was announced after the BBC had experimented with 8k during the London Olympics.[98][99]

On January 27, 2013, Asahi Shimbun reported that 4K Ultra HD satellite broadcasts will start in Japan with the 2014 FIFA World Cup.[99][100][101] Japan's Ministry of Internal Affairs and Communications decided on this move to stimulate demand for 4K Ultra HD TVs.[99][100][101]

On February 21, 2013, Sony announced that the PlayStation 4 will support 4K resolution output for photos and videos but games can not be rendered at that resolution.[102][103]

On March 26, 2013, the Advanced Television Systems Committee (ATSC) announced a call of proposals for the ATSC 3.0 physical layer which states that the plan is for the system to support video with a resolution of 3840x2160 at 60 fps.[104][105][106][107]

On April 11, 2013, Bulb TV created by Canadian serial entrepreneur Evan Kosiner became the first broadcaster to provide a 4K linear channel and VOD content to cable and satellite companies in North America.[108][109][110][111] The channel is licensed by the Canadian Radio-Television and Telecommunications Commission to provide educational content.[112]

On April 19, 2013, SES announced the first Ultra HD transmission using the HEVC standard.[113][114][115] The transmission had a resolution of 3840x2160 and a bit rate of 20 Mbit/s.[113][114][115]

On May 9, 2013, NHK and Mitsubishi Electric announced that they had jointly developed the first HEVC encoder for 8K Ultra HD TV, which is also called Super Hi-Vision (SHV).[116][117][118][119] The HEVC encoder supports the Main 10 profile at Level 6.1 allowing it to encode 10-bit video with a resolution of 7680x4320 at 60 fps.[116][117][118][119] The HEVC encoder has 17 3G-SDI inputs and uses 17 boards for parallel processing with each board encoding a row of 7680x256 pixels to allow for real time video encoding.[116][117][118][119] The HEVC encoder is compliant with draft 4 of the HEVC standard and has a maximum bit rate of 340 Mbit/s.[120] The HEVC encoder was shown at the NHK Science & Technology Research Laboratories Open House 2013 that took place from 30 May to June 2.[116][118][121] At the NHK Open House 2013 the HEVC encoder used a bit rate of 85 Mbit/s which gives a compression ratio of 350:1.[122][123]

On May 21, 2013, Microsoft announced the Xbox One which will support 4K resolution (3840×2160) video output and 7.1 surround sound.[124][125][126] Yusuf Mehdi, corporate vice president of marketing and strategy for Microsoft, has stated that there is no hardware restriction that would prevent Xbox One games from running at 4K resolution.[125]

On May 30, 2013, Eye IO announced that their encoding technology was licensed by Sony Pictures Entertainment to deliver 4K Ultra HD video.[127][128] Eye IO encodes their video assets at 3840x2160 and includes support for the xvYCC color space.[127][128]

In mid-2013, a China television manufacturer produced the first 50-inch UHD television set costing less than $1,000.[129]

On June 11, 2013, Comcast announced that they had demonstrated the first public U.S. based delivery of 4K Ultra HD video at the 2013 NCTA show.[130][131] The demonstration included segments from Oblivion, Defiance, and nature content sent over a DOCSIS 3.0 network.[131]

On June 13, 2013, ESPN announced that they would end the broadcast of the ESPN 3D channel by the end of the year and that they will "experiment with things like UHDTV".[132]

On June 26, 2013, Sharp announced the LC-70UD1U which is a 70 in (180 cm) 4K Ultra HD TV.[133][134] The LC-70UD1U is the world's first TV with THX 4K certification.[133][134]

On July 2, 2013, Jimmy Kimmel Live! recorded in 4K Ultra HD a performance by musical guest Karmin and the video clip will be used as demonstration material at Sony stores.[135]

On July 3, 2013, Sony announced the release of their 4K Ultra HD Media Player with a price of US$7.99 for rentals and US$29.99 for purchases.[136][137] The 4K Ultra HD Media Player only works with Sony's 4K Ultra HD TVs.[137]

On July 15, 2013, the CEA announced the publication of CEA-861-F which is a standard that can be used by interfaces such as DVI, HDMI, and LVDS.[138] CEA-861-F adds support for several Ultra HD video formats and additional color spaces.[138]

On September 2, 2013 Acer announced the first smartphone dubbed Liquid S2 capable of recording 4K.[139]

On September 4, 2013, the HDMI Forum announced the release of the HDMI 2.0 specification which can support 4K resolution at 60 fps.[140] On the same day Panasonic announced the Panasonic TC-L65WT600 which will be the first 4K TV to support 4K resolution at 60 fps.[141][142] The Panasonic TC-L65WT600 will have a 65 in (170 cm) screen, support for DisplayPort 1.2a, support for HDMI 2.0, an expected ship date of October, and a suggested retail price of US$5,999.[141][142]

On September 12–17, 2013,[143] at the 2013 IBC Conference in Amsterdam, Nagra introduced a Ultra HD User Interface called Project Ultra based on HTML 5 which works with OpenTV 5.[144]

On October 4, 2013, DigitalEurope, announced the requirements for their UHD logo in Europe.[145] The DigitalEurope UHD logo will require that the display support a resolution of at least 3840x2160, a 16:9 aspect ratio, the Rec. 709 (HDTV) color space, 8-bit video, 24p/25p/30p/50p/60p frame rates, and 2 channel audio.[145]

On October 29, 2013, Elemental Technologies announced support for real-time 4K Ultra HD HEVC video processing. Elemental provided live video streaming of the 2013 Osaka Marathon on October 27, 2013, in a workflow designed by K-Opticom, a telecommunications operator in Japan. Live coverage of the race in 4K Ultra HD was available to viewers at the International Exhibition Center in Osaka. This transmission of 4K Ultra HD HEVC video in real-time was an industry-first.[146]

On November 28, 2013, Organizing Committee of the XXII Olympic Winter Games and XI Paralympic Winter Games 2014 in Sochi chief Dmitri Chernyshenko stated that the 2014 Olympic Winter Games are to be filmed in 8K Super Hi-Vision.[147]

On December 25, 2013, YouTube added a "2160p 4K" option to its videoplayer. Previously, a visitor had to select the "original" setting in the video quality menu in order to watch a video in 4K resolution. With the new setting, YouTube users can much more easily identify and play 4K videos.[148]

On December 30, 2013, Samsung announced availability of its 110-inch Ultra HDTV for custom orders, making this the world's largest Ultra HDTV so far.[149]

2014

On January 22, 2014, European Southern Observatory became the first scientific organization to deliver Ultra HD footage at regular intervals.[150]

On May 6, 2014, France announced[151] DVB-T2 tests in Paris for Ultra HD HEVC broadcast with objectives to replace by 2020 the current DVB-T MPEG4 HD national broadcast.

On May 26, 2014, satellite operator Eutelsat announced[152] the launch of Europe's first Ultra HD demo channel in HEVC, broadcasting at 50 frames/second. The channel is available on the Hot Bird satellites and can be watched by viewers with 4k TVs equipped with DVB-S2 demodulators and HEVC decoders.

In June 2014, the FIFA World Cup of that year (held in Brazil) became the first to be shot entirely in Ultra HD, by Sony. The European Broadcasting Union (EBU) broadcast matches of the FIFA World Cup to audiences in North America, Latin America, Europe and Asia in Ultra HD via SES' NSS-7 and SES-6 satellites.[153] Indian satellite TV provider unveils its plan to launch 4k UHD service early in 2015 and showcased live FIFA World Cup quarter final match in 4k UHD through Sony Entertainment Television Sony SIX.[154]

On June 24, 2014, the CEA announced that it has updated the guidelines for Ultra High-Definition and released guidelines for Connected Ultra High-Definition which adds support for internet video delivered using HEVC.[155][156] The CEA is developing a UHD logo for voluntary use by companies that have products which meet the CEA guidelines.[155][156] The CEA also clarified that "Ultra High-Definition", "Ultra HD", or "UHD" can be used with other modifiers and gave an example with "Ultra High-Definition TV 4K".[155][156]

On July 15, 2014, Researchers from the University of Essex both captured and delivered its graduation ceremonies in 4kUHDTV over the internet using H.264 in realtime.[157][158] The 4K video stream was published at 8 Mbit/s and 14 Mbit/s for all its 11 ceremonies (till July 19), with people viewing in from countries such as Cyprus, Bulgaria, Germany, Australia, UK and others.

On September 4, 2014, Canon Inc. announced that with a firmware upgrade they will add support for the Rec. 2020 color space to their EOS C500 and EOS C500 PL camera models and their DP-V3010 4K display.[159][160]

On September 4, 2014, Microsoft announced a firmware update for the Microsoft Lumia 1020, 930, Icon, and 1520 phones that adds 4k video recording. The update was later released by the individual phone carriers over the following weeks and months after the announcement.[161]

On September 5, 2014, the Blu-ray Disc Association announced that the 4K Blu-ray Disc specification will support 4K video at 60 fps, High Efficiency Video Coding, the Rec. 2020 color space, high dynamic range, and 10-bit color depth.[162][163] 4K Blu-ray Disc will have a data rate of at least 50 Mbit/s and may include support for 66/100 GB discs.[162][163] 4K Blu-ray Disc will be licensed in the spring or summer of 2015 and 4K Blu-ray Disc players have an expected release date of late 2015.[162][163]

On September 5, 2014, DigitalEurope released their Ultra HD logo for companies that meet their technical requirements.[164][165][166]

On September 11, 2014 satellite operator SES announced the first Ultra HD conditional access-protected broadcast using DVB standards at the IBC show in Amsterdam. The demonstration used a Samsung Ultra HD TV, with a standard Kudelski SmarDTV CI Plus conditional access module, to decrypt a full 3840x2160 pixel CAS-protected Ultra HD signal in HEVC broadcast via an SES Astra satellite at 19.2°E.[167]

On November 19, 2014, rock band Linkin Park's concert at Berlin's O2 World Arena was broadcast live in Ultra HD via an Astra 19.2°E satellite. The broadcast was encoded in the UHD 4K standard with the HEVC codec (50 frame per second and a 10 bit colour depth), and was a joint enterprise of satellite owner SES, SES Platform Services and Samsung.[168]

2015

Indian satellite pay TV provider Tata Sky launched UHD service and UHD Set Top Box on 9 January 2015. The service is 4Kp50 and price of UHD box is 5900 for existing SD/HD customers and 6400 for new customers. Cricket World Cup 2015 will be telecast live in 4K for free to those who own Tata Sky's UHD 4K STB.

In May 2015, France Télévisions broadcast matches from Roland Garros live in Ultra HD via the EUTELSAT 5 West A satellite in the HEVC standard. The channel “France TV Sport Ultra HD” was available via the Fransat platform for viewers in France.[169]

In May, satellite operator SES announced that Europe's first free-to-air Ultra HD channel (from Germany's pearl.tv shopping channel) will launch in September 2015, broadcast in native Ultra HD via the Astra 19.2°E satellite position.[170]

In June, SES launched its first Ultra HD demonstration channel for cable operators and content distributors in North America to prepare their systems and test their networks for Ultra HD delivery. The channel is broadcast from the SES-3 satellite at 103°W.[171]

In June, SPI International previewed its “4K FunBox UHD” Ultra HD channel on the HOT BIRD 4K1 channel, in advance of its commercial launch on Eutelsat’s HOT BIRD satellites in the autumn.[172]

In July 2015, German HD satellite broadcaster HD+ and TV equipment manufacturer TechniSat announced an Ultra HD TV set with integrated decryption for reception of existing HD+ channels (available in the Autumn) and a new Ultra HD demonstration channel due to begin broadcasting in September.[173]

On 2 August 2015, The FA community shield in England was broadcast in ultra HD by broadcast company BT Sport, becoming the first English football game to be shown in the Ultra HD format. The match was shown on Europe's first ultra hd channel, BT Sport Ultra HD.[174]

Fashion One 4K launched on September 2, 2015 becoming the first global Ultra HD TV channel. Reaching nearly 370 million households across the World, the fashion, lifestyle and entertainment network broadcasts via satellite from Measat at 91.5°E (for Asia Pacific, Middle East, Australia) and from SES satellites Astra 19.2°E (for Europe), SES-3 at 103°W (for North America), NSS-806 at 47.5°W (for South America).[175]

In September 2015, Eutelsat presented new consumer research, conducted by TNS and GfK, on Ultra HD and screen sales in key TV markets. The study looked at consumer exposure to Ultra HD, perceived benefits and willingness to invest in equipment and content. GfK predicts a 200% increase in Ultra HD screen sales from June to December 2015, with sales expected to reach five million by the end of the year. GfK also forecasts that Ultra HD screens in 2020 will represent more than 70% of total sales across Europe and almost 60% in the Middle East and North Africa.[176]

On 2 September 2015, Sony unveiled the Xperia Z5 Premium; the first smartphone with a 4K display.[177]

On 9 September 2015, Apple Inc. announced that their new smartphone the iPhone 6s will be able to record video in 4K.[178]

On 6 October 2015, Microsoft unveiled the latest version of their hybrid laptop-tablet Microsoft Surface Pro 4 with a display of "over 6 million pixels", as well as the Microsoft Surface Book with a similar screen, and their new phones the Microsoft Lumia 950 and 950 XL which, aside from 4k video recording that their predecessors included, feature a display of "over 5 million pixels". ).[179]

On 8 December 2015, the Roman Catholic ceremony of the opening of the Holy Door in Vatican City, which marked the beginning of the Jubilee Year of Mercy, was the first worldwide Ultra HD broadcast via satellite.[180] The event was produced in Ultra-HD by the Vatican Television Center with the support of Eutelsat, Sony, Globecast and DBW Communication. The team did some advanced experimentation with 4K/High Dynamic Range live images and in particular using technology developed by the BBC’s R&D division and Japan’s public broadcaster NHK in terms of Hybrid Log Gamma (HLG) signals.[181]

2016

The "UHD Alliance", an industry consortium of content creators, distributors, and hardware manufacturers, announced Monday on the 11th of January 2016 during CES 2016 press conference its "Ultra HD Premium" specification, which defines resolution, bit depth, color gamut, high-dynamic-range imaging (HDRI) and rendering (HDRR) required for Ultra HD (UHDTV) content and displays to carry their Ultra HD Premium logo.[5][6][7][8][9]

On April 2, 2016, Ultra-high-definition television demo channel UHD1 broadcast the Le Corsaire ballet in Ultra HD live from the Vienna State Opera. The programme was produced by Astra satellite owner, SES in collaboration with European culture channel ARTE, and transmitted free-to-air, available to anyone with reception of the Astra 19.2°E satellites and an ultra HD screen equipped with an HEVC decoder.[182]

List of UHD television channels

Global

Europe

Americas

Asia

  • Airtel 4K
  • High 4K TV
  • UMAX[188]
  • SkyUHD 1
  • SkyUHD 2
  • UXN

Field trials of UHDTV over DTT networks

Field trials have included the following.[189]

Type Country Transmitter site Covering ERP DTT System Channel Bandwidth Transmission Mode Multiplex Capacity Signal bit rate Video Encoding Standard Picture Standard Audio Encoding Standard Center Frequency Used
8K-UHD Japan[190] NHK Hitoyoshi Station Hitoyoshi Area, Kumamoto Prefecture 140W(H)

135W(V)

ISDB-T 6 MHz 32k

GI=1/32 4096QAM FEC 3/4 dual-polarized MIMO

91.8Mbit/s 91.0Mbit/s MPEG-4

AVC/H.264

7680 x 4320p

59.94frame/s 8 bits/pixel

MPEG-4 AAC

384 kbit/s

671 MHz

(Ch 46 in Japan)

NHK Mizukami Station 25W(H)

25W(V)

671 MHz

(Ch 46 in Japan)

NHK STRL Building Tokyo 93W(H)

93W(V)

581 MHz (Ch 31 in Japan)
8K-UHD Korea (Republic of) Technical Research Institute Building of Korean Broadcasting System (KBS) Yeoeuido, Seoul 1 mW(H)

1 mW(V)

- 6 MHz 2k

GI= 1/16 256QAM FEC 3/4 dual-polarized MIMO

50.475 Mbit/s 50.0 Mbit/s HEVC - - 785 MHz

(Ch 66 in Korea)

4K-UHD Korea (Republic of) Gwanaksan South Metropolitan area,of Seoul 36.7 kW DVB-T2 6 MHz 32k extended mode

GI = 1/16 PP4 256 QAM FEC 3/4, 4/5, 5/6

< 35.0 Mbit/s Variable

(some trials at 25~34 Mbit/s)

HEVC Main10

Level 5.1 Max 28 Mbit/s

3840x2160p

60 frames/s 8 bits or 10 bits/pixel

MPEG-4 AAC-LC

or Dolby AC-3

Max 5.1Ch Max 600 kbit/s

761 MHz (Ch 62 in Korea)
12.9 kW 701 MHz

(Ch 52 in Korea)

40.0 kW 707 MHz

(Ch 53 in Korea)

Namsan Central area of Seoul 2.2 kW 761 MHz (Ch 62 in Korea)
Yongmunsan West Metropolitan area of,Seoul 8.3 kW 707 MHz

(Ch 53 in Korea)

4K-UHD France Eiffel Tower City of Paris 1 kW DVB-T2 8 MHz 32k extended mode, GI = 1/128, 256QAM,

FEC2/3, PP7

40.2 Mbit/s Two programmes carried:

one at 22.5 Mbit/s, one at,17.5 Mbit/s

HEVC 3840x2160p,

50 frames/s, 8 bits/pixel

HE-AAC 192 kbit/s 514 MHz

(Ch26 in Region 1)

4K-UHD Spain ETSI Tele-comunicación Ciudad Universitaria Madrid 125W DVB-T2 8 MHz 32k, extended mode, GI = 1/128, 64QAM, FEC5/6, PP7 36.72 Mbit/s 35 Mbit/s, (other bit rates also tested) HEVC 3840x2160p,

50 frames/s, 8 bits/pixel

E-AC-3 5.1 754 MHz, (Ch56 in Region 1)
4K-UHD Sweden Stockholm Nacka City of Stockholm 35 kW DVB-T2 8 MHz 32k, extended mode, GI =,19/256, 256QAM, FEC3/5, PP4 31.7 Mbit/s 24 Mbit/s HEVC 3840x2160p

29.97 frames/s, 8 bits/pixel

618 MHz (Ch 39 in Region 1)
4K-UHD United Kingdom[191] Crystal Palace Greater London,(serving over 4.5 Million households) 39.8 kW DVB-T2 8 MHz 32k, extended mode,

GI = 1/128, 256QAM, FEC 2/3, PP7

40.2 Mbit/s Variable (some trials at 35 Mbit/s) HEVC Mixture of 3840x2160p,50 frames/s and 3840x2160p,59.94 frames/s,Most of the trial at 8 bits/pixel, some at 10 bits/pixel 586 MHz,(Ch 35 in Region 1)
4K-UHD Winter Hill North-west of England, including Manchester and Liverpool (serving 2.7 Million households) 22.5 kW DVB-T2 602 MHz,(Ch 37 in Region 1)
4K-UHD Black Hill Central Scotland, including Glasgow and Edinburgh (serving 1 Million households) 39,kW DVB-T2 586 MHz,(Ch 35 in Region 1)
4K-UHD Czech Republic[192] Žižkov Television Tower Prague - DVB-T2 8 MHz - - - HEVC 3840x2160p - 706 MHz (Ch50 in Region 1)

Status of standardization of UHDTV

Standards that deal with UHDTV include:

Standardization in ITU-R

Standards approved in ITU-R:

  • Rec. ITU-R BT.1201-1 (2004)[193]
  • Rec. ITU-R BT.1769 (2006)[194]
  • Rec. ITU-R BT.2020 (2012, revised 2014)[25][195]
  • Rec. ITU-R BT.2035-0 (07/13) A reference viewing environment for evaluation of HDTV program material or completed programmes
  • Rec. ITU-R BS.2051-0 (02/14) Advanced sound system for programme production

Other documents prepared or being prepared by ITU-R:

  • Report ITU-R BT.2246-3 (2014) The present state of ultra-high definition television
  • Draft New Report ITU-R BT.[UHDTV-DTT TRIALS] (Sub-Working Group 6A-1) Collection of field trials of UHDTV over DTT networks[189]

Standardization in ITU-T and MPEG

Standards developed in ITU-T's VCEG and ISO/IEC JTC 1's MPEG that support Ultra-HD include:

Standardization in SMPTE

  • SMPTE 2036-1 (2009)[196]
  • SMPTE 2036-2 (2008)[197]
  • SMPTE 2036-3 (2010)[198]

Standardization for Europe

DVB approved the Standard TS 101 154 V2.1.1, published (07/2014) in the DVB Blue Book A157 Specification for the use of Video and Audio Coding in Broadcasting Applications based on the MPEG-2 Transport Stream, which is expected to be published by ETSI in the coming months.

Standardization for Korea

Standards for UHDTV in Korea have been developed by its Telecommunications Technology Association.

On August 30, 2013, the scenarios for 4K-UHDTV service were described in the Report "TTAR 07.0011: A Study on the UHDTV Service Scenarios and its Considerations".

On May 22, 2014, the technical report "TTAR-07.0013: Terrestrial 4K UHDTV Broadcasting Service" was published.

On October 13, 2014, an interim standard – "TTAI.KO-07.0123: Transmission and Reception for Terrestrial UHDTV Broadcasting Service" – was published based on HEVC encoding, with MPEG 2 TS, and DVB-T2 serving as the standards.

See also

  • Rec. 2020 – ITU-R Recommendation for UHDTV
  • 4K resolution – Resolutions of common 4K formats and list of 4K-monitors, TVs, projectors
  • 8K resolution – Specifications for ~8x4K UHD and 8Kx8K fulldome
  • Ultra HD Blu-ray - 2160p / 4K (3840x2160 resolution) format Blu-ray Disc as specified by Blu-ray Disc Association
  • IMAX – A film theater format that historically has been innovative in creating a more realistic viewing experience
  • High Efficiency Video Coding (HEVC)
  • VP9 / WebM
  • 22.2 surround sound – The audio component of Super Hi-Vision

Notes

  1. The resulting lines in the image alternate between pixels from the green-1 and red CCDs, and pixels from the blue and green-2 CCDs.

References

  1. http://www.dr-lex.be/info-stuff/ultrahighdef.html
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 http://www.uhdalliance.org/members/ UHD Alliance
  6. 6.0 6.1 http://www.businesswire.com/news/home/20160104006605/en/UHD-Alliance-Defines-Premium-Home-Entertainment-Experience UHD Alliance Defines Premium Home Entertainment Experience
  7. 7.0 7.1 http://www.wired.co.uk/news/archive/2016-01/05/uhd-alliance-ces-2016 'UHD Alliance' finally decides what next-gen video actually is
  8. 8.0 8.1 http://www.engadget.com/2016/01/04/uhd-alliance-reveals-its-specs-for-premium-4k-tvs/ UHD Alliance reveals its specs for 'premium' 4K TVs
  9. 9.0 9.1 http://www.cnet.com/news/what-is-uhd-alliance-premium-certified/ What is UHD Alliance Premium Certified?
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. 12.0 12.1 Lua error in package.lua at line 80: module 'strict' not found.
  13. 13.0 13.1 13.2 Lua error in package.lua at line 80: module 'strict' not found.
  14. 14.0 14.1 14.2 Lua error in package.lua at line 80: module 'strict' not found.
  15. 15.0 15.1 Lua error in package.lua at line 80: module 'strict' not found.
  16. 16.0 16.1 Lua error in package.lua at line 80: module 'strict' not found.
  17. 17.0 17.1 17.2 17.3 Lua error in package.lua at line 80: module 'strict' not found.
  18. 18.0 18.1 Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. http://www.pcworld.com/article/2089720/japans-nhk-tests-longdistance-8k-tv-broadcast-signal.html
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. 25.0 25.1 25.2 Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. 27.0 27.1 27.2 27.3 Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. Lua error in package.lua at line 80: module 'strict' not found.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. 32.0 32.1 Lua error in package.lua at line 80: module 'strict' not found.
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. 34.0 34.1 Lua error in package.lua at line 80: module 'strict' not found.
  35. 35.0 35.1 Lua error in package.lua at line 80: module 'strict' not found.
  36. 36.0 36.1 36.2 Lua error in package.lua at line 80: module 'strict' not found.
  37. Lua error in package.lua at line 80: module 'strict' not found.
  38. Lua error in package.lua at line 80: module 'strict' not found.
  39. Lua error in package.lua at line 80: module 'strict' not found.
  40. Lua error in package.lua at line 80: module 'strict' not found.
  41. Lua error in package.lua at line 80: module 'strict' not found.
  42. Lua error in package.lua at line 80: module 'strict' not found.
  43. Lua error in package.lua at line 80: module 'strict' not found.
  44. Lua error in package.lua at line 80: module 'strict' not found.
  45. Lua error in package.lua at line 80: module 'strict' not found.
  46. Lua error in package.lua at line 80: module 'strict' not found.
  47. Lua error in package.lua at line 80: module 'strict' not found.
  48. 48.0 48.1 Lua error in package.lua at line 80: module 'strict' not found.
  49. 49.0 49.1 49.2 Lua error in package.lua at line 80: module 'strict' not found.
  50. 50.0 50.1 50.2 50.3 Lua error in package.lua at line 80: module 'strict' not found.
  51. 51.0 51.1 51.2 51.3 Lua error in package.lua at line 80: module 'strict' not found.
  52. Lua error in package.lua at line 80: module 'strict' not found.
  53. Lua error in package.lua at line 80: module 'strict' not found.
  54. Lua error in package.lua at line 80: module 'strict' not found.
  55. Lua error in package.lua at line 80: module 'strict' not found.
  56. Lua error in package.lua at line 80: module 'strict' not found.
  57. Lua error in package.lua at line 80: module 'strict' not found.
  58. Lua error in package.lua at line 80: module 'strict' not found.
  59. Lua error in package.lua at line 80: module 'strict' not found.
  60. Lua error in package.lua at line 80: module 'strict' not found.
  61. Lua error in package.lua at line 80: module 'strict' not found.
  62. 62.0 62.1 62.2 Lua error in package.lua at line 80: module 'strict' not found.
  63. Lua error in package.lua at line 80: module 'strict' not found.
  64. Lua error in package.lua at line 80: module 'strict' not found.
  65. 65.0 65.1 Lua error in package.lua at line 80: module 'strict' not found.
  66. 66.0 66.1 Lua error in package.lua at line 80: module 'strict' not found.
  67. 67.0 67.1 Lua error in package.lua at line 80: module 'strict' not found.
  68. 68.0 68.1 Lua error in package.lua at line 80: module 'strict' not found.
  69. Lua error in package.lua at line 80: module 'strict' not found.
  70. 70.0 70.1 Lua error in package.lua at line 80: module 'strict' not found.
  71. 71.0 71.1 Lua error in package.lua at line 80: module 'strict' not found.
  72. 72.0 72.1 Lua error in package.lua at line 80: module 'strict' not found.
  73. 73.0 73.1 Lua error in package.lua at line 80: module 'strict' not found.
  74. 74.0 74.1 Lua error in package.lua at line 80: module 'strict' not found.
  75. 75.0 75.1 Lua error in package.lua at line 80: module 'strict' not found.
  76. 76.0 76.1 76.2 Lua error in package.lua at line 80: module 'strict' not found.
  77. 77.0 77.1 77.2 Lua error in package.lua at line 80: module 'strict' not found.
  78. 78.0 78.1 78.2 Lua error in package.lua at line 80: module 'strict' not found.
  79. 79.0 79.1 79.2 79.3 79.4 Lua error in package.lua at line 80: module 'strict' not found.
  80. Lua error in package.lua at line 80: module 'strict' not found.
  81. Lua error in package.lua at line 80: module 'strict' not found.
  82. 82.0 82.1 82.2 82.3 Lua error in package.lua at line 80: module 'strict' not found.
  83. 83.0 83.1 83.2 83.3 Lua error in package.lua at line 80: module 'strict' not found.
  84. 84.0 84.1 84.2 84.3 Lua error in package.lua at line 80: module 'strict' not found.
  85. 85.0 85.1 85.2 85.3 Lua error in package.lua at line 80: module 'strict' not found.
  86. Lua error in package.lua at line 80: module 'strict' not found.
  87. Lua error in package.lua at line 80: module 'strict' not found.
  88. Lua error in package.lua at line 80: module 'strict' not found.
  89. 89.0 89.1 Lua error in package.lua at line 80: module 'strict' not found.
  90. 90.0 90.1 Lua error in package.lua at line 80: module 'strict' not found.
  91. 91.0 91.1 Lua error in package.lua at line 80: module 'strict' not found.
  92. 92.0 92.1 Lua error in package.lua at line 80: module 'strict' not found.
  93. 93.0 93.1 Lua error in package.lua at line 80: module 'strict' not found.
  94. 94.0 94.1 Lua error in package.lua at line 80: module 'strict' not found.
  95. 95.0 95.1 Lua error in package.lua at line 80: module 'strict' not found.
  96. Lua error in package.lua at line 80: module 'strict' not found.
  97. Lua error in package.lua at line 80: module 'strict' not found.
  98. Lua error in package.lua at line 80: module 'strict' not found.
  99. 99.0 99.1 99.2 Lua error in package.lua at line 80: module 'strict' not found.
  100. 100.0 100.1 Lua error in package.lua at line 80: module 'strict' not found.
  101. 101.0 101.1 Lua error in package.lua at line 80: module 'strict' not found.
  102. Lua error in package.lua at line 80: module 'strict' not found.
  103. Lua error in package.lua at line 80: module 'strict' not found.
  104. Lua error in package.lua at line 80: module 'strict' not found.
  105. Lua error in package.lua at line 80: module 'strict' not found.
  106. Lua error in package.lua at line 80: module 'strict' not found.
  107. Lua error in package.lua at line 80: module 'strict' not found.
  108. Lua error in package.lua at line 80: module 'strict' not found.
  109. Lua error in package.lua at line 80: module 'strict' not found.
  110. Lua error in package.lua at line 80: module 'strict' not found.
  111. Lua error in package.lua at line 80: module 'strict' not found.
  112. Lua error in package.lua at line 80: module 'strict' not found.
  113. 113.0 113.1 Lua error in package.lua at line 80: module 'strict' not found.
  114. 114.0 114.1 Lua error in package.lua at line 80: module 'strict' not found.
  115. 115.0 115.1 Lua error in package.lua at line 80: module 'strict' not found.
  116. 116.0 116.1 116.2 116.3 Lua error in package.lua at line 80: module 'strict' not found.
  117. 117.0 117.1 117.2 Lua error in package.lua at line 80: module 'strict' not found.
  118. 118.0 118.1 118.2 118.3 Lua error in package.lua at line 80: module 'strict' not found.
  119. 119.0 119.1 119.2 Lua error in package.lua at line 80: module 'strict' not found.
  120. Lua error in package.lua at line 80: module 'strict' not found.
  121. Lua error in package.lua at line 80: module 'strict' not found.
  122. Lua error in package.lua at line 80: module 'strict' not found.
  123. Lua error in package.lua at line 80: module 'strict' not found.
  124. Lua error in package.lua at line 80: module 'strict' not found.
  125. 125.0 125.1 Lua error in package.lua at line 80: module 'strict' not found.
  126. Lua error in package.lua at line 80: module 'strict' not found.
  127. 127.0 127.1 Lua error in package.lua at line 80: module 'strict' not found.
  128. 128.0 128.1 Lua error in package.lua at line 80: module 'strict' not found.
  129. Lua error in package.lua at line 80: module 'strict' not found.
  130. Lua error in package.lua at line 80: module 'strict' not found.
  131. 131.0 131.1 Lua error in package.lua at line 80: module 'strict' not found.
  132. Lua error in package.lua at line 80: module 'strict' not found.
  133. 133.0 133.1 Lua error in package.lua at line 80: module 'strict' not found.
  134. 134.0 134.1 Lua error in package.lua at line 80: module 'strict' not found.
  135. Lua error in package.lua at line 80: module 'strict' not found.
  136. Lua error in package.lua at line 80: module 'strict' not found.
  137. 137.0 137.1 Lua error in package.lua at line 80: module 'strict' not found.
  138. 138.0 138.1 Lua error in package.lua at line 80: module 'strict' not found.
  139. Lua error in package.lua at line 80: module 'strict' not found.
  140. Lua error in package.lua at line 80: module 'strict' not found.
  141. 141.0 141.1 Lua error in package.lua at line 80: module 'strict' not found.
  142. 142.0 142.1 Lua error in package.lua at line 80: module 'strict' not found.
  143. Lua error in package.lua at line 80: module 'strict' not found.
  144. Lua error in package.lua at line 80: module 'strict' not found.
  145. 145.0 145.1 Lua error in package.lua at line 80: module 'strict' not found.
  146. Lua error in package.lua at line 80: module 'strict' not found.
  147. Lua error in package.lua at line 80: module 'strict' not found.
  148. Lua error in package.lua at line 80: module 'strict' not found.
  149. Lua error in package.lua at line 80: module 'strict' not found.
  150. Lua error in package.lua at line 80: module 'strict' not found.
  151. http://www.csa.fr/Espace-juridique/Decisions-du-CSA/Ultra-haute-definition-UHD-reponse-au-HD-Forum
  152. http://www.eutelsat.com/en/news/press-releases/2014/Eutelsat-launches-ultra-hd-demo-channel-HEVC.html
  153. Lua error in package.lua at line 80: module 'strict' not found.
  154. http://indianexpress.com/article/technology/technology-others/tata-sky-unveils-plans-for-4k-set-top-box/
  155. 155.0 155.1 155.2 Lua error in package.lua at line 80: module 'strict' not found.
  156. 156.0 156.1 156.2 Lua error in package.lua at line 80: module 'strict' not found.
  157. Lua error in package.lua at line 80: module 'strict' not found.
  158. Lua error in package.lua at line 80: module 'strict' not found.
  159. Lua error in package.lua at line 80: module 'strict' not found.
  160. Lua error in package.lua at line 80: module 'strict' not found.
  161. Lua error in package.lua at line 80: module 'strict' not found.
  162. 162.0 162.1 162.2 Lua error in package.lua at line 80: module 'strict' not found.
  163. 163.0 163.1 163.2 Lua error in package.lua at line 80: module 'strict' not found.
  164. Lua error in package.lua at line 80: module 'strict' not found.
  165. Lua error in package.lua at line 80: module 'strict' not found.
  166. Lua error in package.lua at line 80: module 'strict' not found.
  167. Lua error in package.lua at line 80: module 'strict' not found.
  168. Lua error in package.lua at line 80: module 'strict' not found.
  169. FRANSAT et France Télévisions s’associent pour retransmettre partout en France la chaîne événementielle « France TV Sport Ultra HD »
  170. Lua error in package.lua at line 80: module 'strict' not found.
  171. SES launches Ultra HD demo channel in North America IP&TV Nerws. June 17, 2015. Accessed June 28, 2015
  172. SPI International previews “4K FunBox UHD” Ultra HD channel in advance of commercial launch at Eutelsat’s HOT BIRD position
  173. Lua error in package.lua at line 80: module 'strict' not found.
  174. [1] IB times UK.
  175. Fashion One 4K channel launches globally Digital TV Europe September 2, 2015. Retrieved September 29, 2015
  176. http://news.eutelsat.com/pressreleases/eutelsat-reveals-new-consumer-research-on-ultra-hd-and-data-on-skyrocketing-screen-sales-in-key-tv-markets-1216550
  177. http://blogs.sonymobile.com/press_release/sony-unveils-xperia-z5-series/
  178. http://www.theverge.com/2015/9/9/9261591/apple-iphone-6s-announced-specs-price-release-date
  179. [2] Microsoft.com October 6, 2015. Retrieved October 6, 2015
  180. http://news.eutelsat.com/pressreleases/eutelsat-partners-with-vatican-television-centre-for-first-worldwide-ultra-hd-transmission-1266693
  181. http://advanced-television.com/2015/12/14/huge-success-for-uhd-hlg-test-in-rome/
  182. SES and ARTE to Broadcast Le Corsaire Ballet Live in Ultra HD via Astra 19.2 Business Wire. March 29, 2016. Accessed march 30, 2016
  183. http://spiintl.com/funbox4kuhd
  184. http://www.broadbandtvnews.com/2015/10/03/tern-launches-insight-ultrahd-factual-entertainment-channel/
  185. http://www.ses.com/21351175/2015-07-16-Behind-the-scenes-of-pearl_tv
  186. http://sport.bt.com/football/tv-listings/live-events-on-bt-sport-ultra-hd-S11364000615629
  187. http://www.csimagazine.com/csi/Tricolor-TV-launches-two-UHD-channels.php
  188. http://www.umaxtv.co.kr/eng/main/umax/aboutumax.html
  189. 189.0 189.1 Lua error in package.lua at line 80: module 'strict' not found.
  190. Lua error in package.lua at line 80: module 'strict' not found.
  191. Lua error in package.lua at line 80: module 'strict' not found.
  192. Lua error in package.lua at line 80: module 'strict' not found.
  193. Lua error in package.lua at line 80: module 'strict' not found.
  194. Lua error in package.lua at line 80: module 'strict' not found.
  195. Lua error in package.lua at line 80: module 'strict' not found.
  196. Lua error in package.lua at line 80: module 'strict' not found.
  197. Lua error in package.lua at line 80: module 'strict' not found.
  198. Lua error in package.lua at line 80: module 'strict' not found.

External links