Zinc nitride

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Zinc nitride
Tl2O3structure.jpg
Identifiers
1313-49-1 YesY
Properties
Zn3N2
Molar mass 224.154 g/mol
Appearance blue-gray cubic crystals[1]
Density 6.22 g/cm³, solid[1]
Melting point decomposes 700°C[1]
insoluble (decomposes)
Structure
Cubic, cI80
Ia-3, No. 206[2]
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

Chemical properties

Zinc nitride can be obtained by thermally decomposing zincamide (zinc diamine)[3] in an anaerobic environment, at temperatures in excess of 200 °C. The by-product of the reaction is ammonia.[4]

3Zn(NH2)2 → Zn3N2 + 4NH3

It can also be formed by heating zinc to 600 °C in a current of ammonia; the by-product is hydrogen gas.[3][5]

3Zn + 2NH3 → Zn3N2 + 3H2

The decomposition of Zinc Nitride into the elements at the same temperature is a competing reaction.[6] At 700°C Zinc Nitride decomposes.[1] It has also been made by producing an electric discharge between zinc electrodes in a nitrogen atmosphere.[6][7] Thins films have been produced by chemical vapour deposition of Bis(bis(trimethylsilyl)amido]zinc with ammonia gas onto silica or ZnO coated alumina at 275 to 410°C.[8]

The crystal structure is anti-isomorphous with Manganese(III) oxide. (bixbyite).[2][7] The heat of formation is c. 24 kilocalories (100 kJ) per mol.[7] It is a semiconductor with a reported bandgap of c. 3.2eV,[9] however , a thin zinc nitride film prepared by electrolysis of molten salt mixture containing Li3N with a zinc electrode showed a band-gap of 1.01 eV.[10]

Zinc nitride reacts violently with water to form ammonia and zinc oxide.[3][4]

Zn3N2 + 3H2O → 3ZnO + 2NH3

Zinc nitride reacts with lithium (produced in an electrochemical cell) by insertion. The initial reaction is the irreversible conversion into LiZn in a matrix of beta-Li3N. These products then can be converted reversibly and electrochemicalically into LiZnN and metallic Zn.[11][12]

See also

References

  1. 1.0 1.1 1.2 1.3 Lua error in package.lua at line 80: module 'strict' not found.
  2. 2.0 2.1 Lua error in package.lua at line 80: module 'strict' not found.
  3. 3.0 3.1 3.2 Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. Lua error in package.lua at line 80: module 'strict' not found.
  6. 6.0 6.1 Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 7.2 Lua error in package.lua at line 80: module 'strict' not found.
  8. Lua error in package.lua at line 80: module 'strict' not found.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Lua error in package.lua at line 80: module 'strict' not found.
  12. Lua error in package.lua at line 80: module 'strict' not found.

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links

<templatestyles src="Asbox/styles.css"></templatestyles>