3-4 duoprism

From Infogalactic: the planetary knowledge core
(Redirected from 3-4 duopyramid)
Jump to: navigation, search
Uniform 3-4 duoprisms
3-4 duoprism.png 140px
Schlegel diagrams
Type Prismatic uniform polychoron
Schläfli symbol {3}×{4}
Coxeter-Dynkin diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Cells 3 square prisms,
4 triangular prisms
Faces 12 squares,
3 squares,
4 triangles
Edges 24
Vertices 12
Vertex figure 100px
Digonal disphenoid
Symmetry [3,2,4], order 48
Dual 3-4 duopyramid
Properties convex, vertex-uniform

In geometry of 4 dimensions, a 3-4 duoprism, the second smallest p-q duoprism, is a 4-polytope resulting from the Cartesian product of a triangle and a square.

The 3-4 duoprism exists in some of the uniform 5-polytopes in the B5 family.

Images

240px
Net

Related polytopes

The birectified 5-cube, CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png has a uniform 3-4 duoprism vertex figure:

Birectified penteract verf.png

3-4 duopyramid

dual uniform 3-4 duopyramid
Type duopyramid
Schläfli symbol {3}+{4}
Coxeter-Dynkin diagram CDel node f1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node f1.pngCDel 4.pngCDel node.png
CDel node f1.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel node f1.pngCDel 2x.pngCDel node f1.png
Cells 12 digonal disphenoids
Faces 24 isosceles triangles
Edges 19 (12+3+4)
Vertices 7 (3+4)
Symmetry [3,2,4], order 48
Dual 3-4 duoprism
Properties convex, facet-transitive

The dual of a 3-4 duoprism is called a 3-4 duopyramid. It has 12 tetragonal disphenoid cells, 24 isosceles triangular faces, 12 edges, and 7 vertices.

240px
Orthogonal projection
180px
Vertex-centered perspective

See also

Notes

References

External links