Growth differentiation factor
From Infogalactic: the planetary knowledge core
Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in development.[1]
Types
Several members of this subfamily have been described, and named GDF1 through GDF15.
- GDF1 is expressed chiefly in the nervous system and functions in left-right patterning and mesoderm induction during embryonic development.[2]
- GDF2 (also known as BMP9) induces and maintains the response embryonic basal forebrain cholinergic neurons (BFCN) have to a neurotransmitter called acetylcholine, and regulates iron metabolism by increasing levels of a protein called hepcidin.[3][4]
- GDF3 is also known as "Vg-related gene 2" (Vgr-2). Expression of GDF3 occurs in ossifying bone during embryonic development and in the thymus, spleen, bone marrow brain, and adipose tissue of adults. It has a dual nature of function; it both inhibits and induces early stages of development in embryos.[5][6][7]
- GDF5 is expressed in the developing central nervous system, with roles in the development of joints and the skeleton, and increasing the survival of neurones that respond to a neurotransmitter called dopamine.[8][9][10]
- GDF6 interacts with bone morphogenetic proteins to regulate ectoderm patterning, and controls eye development.[11][12][13]
- GDF8 is now officially known as myostatin and controls the growth of muscle tissue.[14]
- GDF9, like GDF3, lacks one cysteine relative to other members of the TGF-β superfamily. Its gene expression is limited to the ovaries, and it has a role in ovulation.[15][16]
- GDF10 is closely related to BMP3 and has a roles in head formation and, it is presumed, in skeletal morphogenesis.[17][18] It is also known as BMP-3b.
- GDF11 controls anterior-posterior patterning by regulating the expression of Hox genes,[19] and regulates the number of olfactory receptor neurons occurring in the olfactory epithelium,[20] and numbers of retinal ganglionic cells developing in the retina.[21]
- GDF15 (also known as TGF-PL, MIC-1, PDF, PLAB, and PTGFB) has a role in regulating inflammatory and apoptotic pathways during tissue injury and certain disease processes.[22][23][24]
References
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.
- ↑ Lua error in package.lua at line 80: module 'strict' not found.