Heptagonal tiling
Heptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane |
|
Type | Hyperbolic regular tiling |
Vertex figure | 73 |
Schläfli symbol | {7,3} |
Wythoff symbol | 3 | 7 2 |
Coxeter diagram | |
Symmetry group | [7,3], (*732) |
Dual | Order-7 triangular tiling |
Properties | Vertex-transitive, edge-transitive, face-transitive |
In geometry, the heptagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {7,3}, having three regular heptagons around each vertex.
Contents
Images
160px Poincaré half-plane model |
160px Poincaré disk model |
160px Klein-Beltrami model |
Related polyhedra and tilings
This tiling is topologically related as a part of sequence of regular polyhedra with Schläfli_symbol {n,3}.
*n32 symmetry mutation of regular tilings: {n,3} | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Spherical | Euclidean | Compact hyperb. | Paraco. | Noncompact hyperbolic | |||||||
{2,3} | {3,3} | {4,3} | {5,3} | {6,3} | {7,3} | {8,3} | {∞,3} | {12i,3} | {9i,3} | {6i,3} | {3i,3} |
From a Wythoff construction there are eight hyperbolic uniform tilings that can be based from the regular heptagonal tiling.
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms.
Uniform heptagonal/triangular tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,3], (*732) | [7,3]+, (732) | ||||||||||
{7,3} | t{7,3} | r{7,3} | t{3,7} | {3,7} | rr{7,3} | tr{7,3} | sr{7,3} | ||||
Uniform duals | |||||||||||
V73 | V3.14.14 | V3.7.3.7 | V6.6.7 | V37 | V3.4.7.4 | V4.6.14 | V3.3.3.3.7 |
Hurwitz surfaces
<templatestyles src="Module:Hatnote/styles.css"></templatestyles>
The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the (2,3,7) Schwarz triangle. This is the smallest hyperbolic Schwarz triangle, and thus, by the proof of Hurwitz's automorphisms theorem, the tiling is the universal tiling that covers all Hurwitz surfaces (the Riemann surfaces with maximal symmetry group), giving them a tiling by heptagons whose symmetry group equals their automorphism group as Riemann surfaces. The smallest Hurwitz surface is the Klein quartic (genus 3, automorphism group of order 168), and the induced tiling has 24 heptagons, meeting at 56 vertices.
The dual order-7 triangular tiling has the same symmetry group, and thus yields triangulations of Hurwitz surfaces.
See also
Wikimedia Commons has media related to Order-3 heptagonal tiling. |
- Hexagonal tiling
- Tilings of regular polygons
- List of uniform planar tilings
- List of regular polytopes
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- Lua error in package.lua at line 80: module 'strict' not found.