Neocuproine

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Neocuproine
200px
Neocuproine
Names
IUPAC name
2,9-dimethyl-1,10-phenanthroline
Identifiers
484-11-7 YesY
ChemSpider 58734 N
Jmol 3D model Interactive image
PubChem 65237
  • InChI=1S/C14H12N2/c1-9-3-5-11-7-8-12-6-4-10(2)16-14(12)13(11)15-9/h3-8H,1-2H3 N
    Key: IYRGXJIJGHOCFS-UHFFFAOYSA-N N
  • InChI=1/C14H12N2/c1-9-3-5-11-7-8-12-6-4-10(2)16-14(12)13(11)15-9/h3-8H,1-2H3
    Key: IYRGXJIJGHOCFS-UHFFFAOYAL
  • n1c3c(ccc1C)ccc2ccc(nc23)C
Properties
C14H12N2
Molar mass 208.26 g·mol−1
Appearance Pale yellow solid
Melting point 162 to 164 °C (324 to 327 °F; 435 to 437 K)
Slightly soluble
Solubility Ethanol, Acetone, Ether, Benzene, Light Petroleum (slightly)[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Neocuproine is a heterocyclic organic compound and chelating agent. Phenanthroline ligands were first published in the late 19th century, and the derivatives substituted at the 2 and 9 positions are among the most studied of the modified phenanthrolines.[2][3]

Synthesis and structure

Neocuproine can be prepared by sequential Skraup reactions (Doebner-Miller reaction/condensation) of o-nitroaniline (2-Nitroaniline) with crotonaldehyde diacetate:

File:Recipe 2.gif

An alternate synthesis involves the condensation of o-phenylenediamine, m-nitrobenzenesulphonate, and crotonaldehyde diacetate. This method gives higher yields but is less economical.[1]

Neocuproine crystallizes as a dihydrate and a hemihydrate as well as a hydrated hydrochloride salt. The structure of the dihydrate features a π-stacking motif, with additional hydrogen bonding between the basic nitrogen centers and water.[4]

Coordination chemistry

In the early 1930s, phenanthroline derivatives became known for their use as colorimetric indicators for many transition metals. Neocuproine proved to be highly selective for copper(I). The resulting complex, Cu(neocuproine)2+ has a deep orange-red color.[1] The properties of copper(I) neocuproine complexes have been widely studied, e.g. for the preparation of catenane and rotaxane complexes.[5] The copper-catalyzed release of NO+ (nitrosonium) from S-Nitrosothiols is inhibited by neocuproine.[6]

Other metals

Platinum forms the square planar complexes [PtX2(2,9-dimethyl-1,10-phenanthroline)].[7]

Neocuproine has also been discovered to have properties that cause fragmentation and disappearance of the melanin in adult zebrafish melanocytes. Those expressing eGFP also have been observed to lose eGFP fluorescence in the presence of neocuproine.[8]

References

  1. 1.0 1.1 1.2 Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. Koroglu, Ahmet; Bulut, Ahmet; Ucar, Ibrahim; Nichol, Gary; Harrington, Ross W.; Clegg, William "A second monoclinic polymorph of 2,9-dimethyl-1,10-phenanthroline dihydrate" Organic Papers, E61, 2005, p.3723-3725. doi:10.1107/S1600536805033179
  5. McCleverty, J; Meyer, T. J. "Phenanthroline Ligands" in Comprehensive Coordination Chemistry II, Vol. 1, 2004, p.25-39.
  6. Al-Sa’doni, H.H.; Megson, I.L.; Bisland, S.; Butler, A.R.; Flitney, F.W. Neocuproine, A Selective Cu(I) Chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols. British Journal of Pharmacology, 121(6), 1997, p.1047-1050. doi:10.1038/sj.bjp.0701218
  7. Fanizzi, Francesco P.; Margiotta, Nicola; Lanfranchi, Maurizio; Tiripicchio, Antonio; Pacchioni, Gianfranco; Natile, Giovanni "A Molecular Tool for Measuring the Electron-Acceptor Ability of Ligands from Crystallographic Data" European Journal of Inorganic Chemistry volume 8, 2004, p.1705-1713. doi:10.1002/ejic.200300888
  8. O’Reilly-Pol, Thomas; Johnson, Stephen L. "Neocuproine Ablates Melanocytes in Adult Zebrafish" Zebrafish 5(4). Mary Ann Liebert, Inc. 2008. doi:10.1002/ejic.200300888

Appendix: NMR Shifts

The following figures contain information on the nuclear magnetic resonance spectroscopic data of neocuproine (from Chandler et al.):

1H NMR
Substituent Chemical Shift (δ ppm)
H-3,8 7.45
H-4,7 8.03
H-5,6 7.65
1H Decoupled 13C NMR
Substituent Chemical Shift (δ ppm)
C-2 159.2
C-10b 145.1
C-4 136.2
C-4a 126.7