Seawater desalination in Australia

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

Lua error in package.lua at line 80: module 'strict' not found.

Sydney's Northern Beaches. During recent years, Sydney has experienced some freshwater shortages

Seawater desalination in Australia is the desalination of, or removal of salt from, seawater in Australia.

Background

Until a few decades ago, Australia met its demands for water by drawing freshwater from dams and water catchments. However, during 2000-2010 a significant lack of rainfall drained water reservoirs.[1] The most affected cities were the capitals, where there is high uncertainty in water supply and demand. In 2007, Sydney, the capital city of New South Wales, experienced a dramatic drop of its main dam Warragamba, where water levels dropped to 33% of normal.

Australia’s first desalination plant was constructed in 1903 to treat saline groundwater in the gold fields of Western Australia at Kalgoorlie.[2] Several desalination plants were built in Australia between 1960 and 1980, especially following the revolution in membrane technology that made reverse osmosis economically viable, but vapor-compression desalination and multi-stage flash distillation plants were also built. By 2002, however, only two reverse osmosis desalination plants were still operating, one on Kangaroo Island and the other on Rottnest Island.[1] Seawater reverse osmosis is the only type of desalination technology currently used for large-scale desalination plants in Australia, the most important of these plants being located in Perth and Sydney.[2]

Desalination

Compared to existing sources, desalination is considered to be expensive, but research is underway to develop more effective desalination technology.[3] Despite its drawbacks, it is considered a possible solution to the country's water shortages.

Australia is the driest inhabitable continent on earth and its installed desalination capacity is around 1% of the total world’s desalination capacity. The Department of Agriculture, Fisheries and Forestry has considered several desalination technologies processes in Australia:[1]

Existing plants

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Desalination plants in Australia by state and location [4][5][6][7][8][9][10][11][12]
State Location Capacity (ML/d) Status

Western Australia

Albany (Cape Riche) 33 Approved 2012
Anketell Point (Pilbara) 9.6 Approved 2013[13]
Barrow Island (Gorgon gas project) 7 Operating
Bunbury (Binningup) 137 Operating
Burrup (West Pilbara) 16.4 Operating
Esperance 45 Proposed 2011
Garden Island (Navy Base) Unknown Q1 2014
Karratha 175 Planning
Kwinana Beach 144 Operating
Long Island (Houtman Abrolhos) 0.017 Operating
Onslow (Wheatstone LNG) 11 ?
Rottnest Island 0.55 Operating
Undecided 150 Planning

South Australia

Kangaroo Head (Penneshaw, Kangaroo Island) 0.3 Operating
Marion Bay 0.06 Operating
Port Augusta (Sundrop Farms) 8 Approved 2014
Point Lowly / Port Bonython (BHP Billiton) 280 Approved 2011, construction deferred
Port Spencer / Lipson Cove (Centrex Metals) 14-55 Planning
Lonsdale (Adelaide) 300 Operating
Whyalla Steelworks (Arrium) 4 Operating
Victoria Wonthaggi 400 Operating

New South Wales

Kurnell 250 Operating
Toukley 20 Approved 2007, construction deferred

Queensland

Bribie Island Unknown In dispute
Green Island 0.06 Operating
Hamilton Island 1.5 Operating
Hook Island ? Operating
Long Island (Club Crocodile) 0.12 Operating
North Stradbroke Island Unknown In dispute
St. Agnes / 1770 (Gladstone) 1.5 Construction complete 2013
Sunshine Coast unknown Suggested after 2028
Tugun 125 Operating

Offshore

Christmas Island 4.5 Operating
Home Island (Cocos & Keeling Islands) 0.35 Under construction 2014
Timor Sea (Ichthys LNG) 0.5 ?

In Australia many desalination plants are utilizing wind farms to produce enough energy to operate nearby desalination plants. For example, the Kurnell Desalination Plant, with a capacity of producing 250 million liters (ML) of drinking water per day, supplies 15% of Sydney’s water needs via RO technology and is powered using “100 percent renewable energy” from the 140 MW Capital Wind Farm.[14][15] The Garden Island plant, currently planned for commissioning in 2014, will be powered by wave energy, using Carnegie Wave Energy's CETO system. This system uses submerged buoys to pressurise water offshore, which is piped onshore to either drive turbines for electricity generation or as in this case, to directly desalinate seawater. The Garden Island project is a commercial scale demonstration project, which follows a pilot project off the coast of Fremantle, Western Australia [16]

The availability of renewable resources as well as their fluctuation in electricity production from region to region requires a customized design for each desalination facility. In order to maintain steady-state operations many facilities utilize renewably produced energy while connected to a smart grid, importing or exporting energy to the plant as required. The Perth Seawater Desalination Plant utilizes this strategy where 48 wind turbines produce 80MW on the Emu Downs Wind Farm to provide an overall 24MW to the desalination plant.[17] Electrical energy from the renewable energy can also be stored in storage batteries and utilized when needed. As seen in the PV-powered RO system in Gillen Bore, Australia; producing 1,200 L/d.[18] Or if the plant is not required full-time, it can operate using the power as it becomes available. In 2005 a PV-powered hybrid UF/RO filtration system providing 764 liters per day tolerated well power variation from changing weather conditions.[19]

However, there are limitations in the ability of renewable sources to provide for desalination facilities. Desalination is a continuous process while renewable energies provide inconsistent power[citation needed]. For any new desalination installation to claim it will be powered by renewable energy, additional renewable energy should be generated.

Perth plant

About 2 million people occupy the Perth region in the south western corner of Western Australia. The Perth Seawater Desalination Plant (PSDP) was installed in late 2006 to produce up to 45 gigalitres of potable water per year. In addition, its brine discharge has been shown to have no adverse impact on the environment. The plant buys its power from electricity generated by the Emu Downs Wind Farm, located 200 kilometers north of Perth. The 83 megawatt wind farm consists of 48 wind turbines and contributes over 272 giga-watt-hours (GWhr) per year into the grid, fully offsetting the Perth SWRO Plant’s estimated electrical requirement of 180 GWhr per year.[20] The plant has attracted interest from the world’s water industry and media, and has won numerous national and international awards including the International Desalination Association’s International Desalination Plant of the Year in 2007.

Another seawater desalination plant on the coast about 160 kilometres south of Perth is now operational. This plant is designed to have an initial annual output of 50 gigalitres, with the potential to double to 100 gigalitres.[21]

References

  1. 1.0 1.1 1.2 El Saliby, I., Y. Okour, et al. (2009). "Desalination plants in Australia, review and facts." Desalination 247(1-3): 1-14.
  2. 2.0 2.1 Heath, J. "The Water Supply in Hearth Australia." July 2007 Web. 28 April 2010 <http://www.viacorp.com/perth_water.htm>
  3. Barron, O. "Desalination options and their possible implementation in Western Australia." CSIRO. June 2006.
  4. G. Crisp and E.A. Swinton, Desalination in Australia: A review, Water 35(2) (2008) 94.
  5. Evans, G. “Sydney Desalination.” Water-technology. 26 August 2008. Web. 28 April 2010. <http://www.water-technology.net/features/feature40057>
  6. Desal plant gets final approval.” WAtoday. 24 June 2009. Web. 1 May 2010 <http://www.watoday.com.au/wa-news/desal-plant-gets-final-approval-20090624-cwij.html>
  7. Desalination – Project Information.” SA Water. Government of South Australia. n.d. Web. 1 May 2010. <http://www.sawater.com.au/SAWater/WhatsNew/MajorProjects/ADP_ProjectInfo.htm>
  8. Gipson, D. “Take Bligh’s promises on Bribie Island desalination plan with grain of salt.” LNP. 19 April 2010. Web. 29 April 2010. <http://lnp.org.au/media-centre/media-release/2408-take-blighs-promises-on-bribie-island-desalination-plant-with-a-grain-of-salt.html>
  9. Lucas, P. “Study rules out two future desalination plant sites.” Queensland Government. 23 February 2009. Web. 30 April 2010. <http://www.cabinet.qld.gov.au/mms/StatementDisplaySingle.aspx?id=62905>
  10. "Drinking water for a seaside tourism community" Osmoflo Retrieved 2014-01-07.
  11. Water - A precious commodity Rottnest Island Retrieved 2014-01-09.
  12. Industries - Resorts Ausmos Retrieved 2014-01-09.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Desalination. “Sydney Water. Sydney Water Corporation. n.d. Web. 28 April 2010. <http://www.sydneywater.com.au/Water4Life/Desalination/>
  15. Kurnell Desalination Plant, Australia. n.d. Web. 28 April 2010. <http://www.water-technology.net/projects/kurnell-desalination/>
  16. http://www.carnegiewave.com/
  17. Perth Seawater Desalination Plant, Seawater Reverse Osmosis (SWRO), Kwinana, Australia.” Water-Technology. n.d. Web. 28 April 2010. <http://www.water-technology.net/projects/perth/>
  18. Ghermandi,A., and Messalem, R. “Solar-driven desalination with reverse osmosis: the state of the art.” Desalination and Water Treatment 7 (2009) 287
  19. De Munari, A., Capäo, D.P.S., Richards, B.S., and Schäfer, A.I. “Application of solar-powered desalination in a remote town in South Australia.” Desalination (1987) 67:81-95
  20. “Environmentally sound desalination at the Perth seawater desalination plant” by Richard Stover, Gary Crisp Energy Recovery, Inc., San Leandro, California, USA. Retrieved on 2 May 2010 from http://www.energyrecovery.com/UserFiles/file/archives/news/documents/ThePerthSaltwaterDesalinationPlant.pdf
  21. http://www.watercorporation.com.au. Retrieved on 2 May 2010.
  • Anderson, J. M. (2006). "Integrating recycled water into urban water supply solutions." Desalination 187(1-3): 1-9

See also