Order-5 cubic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-5 cubic honeycomb
H3 435 CC center.png
Poincaré disk models
Type Hyperbolic regular honeycomb
Uniform hyperbolic honeycomb
Schläfli symbol {4,3,5}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {4,3} Uniform polyhedron-43-t0.png
Faces square {4}
Edge figure pentagon {5}
Vertex figure 80px
icosahedron
Coxeter group BH3, [5,3,4]
Dual Order-4 dodecahedral honeycomb
Properties Regular

The order-5 cubic honeycomb is one of four compact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Description

It is analogous to the 2D hyperbolic order-5 square tiling, {4,5}

240px240px

Symmetry

It a radial subgroup symmetry construction with dodecahedral fundamental domains: Coxeter notation: [4,(3,5)*], index 120.

Related polytopes and honeycombs

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png, having icosahedron and tetrahedron cells.

Compact regular honeycombs

There are four regular compact honeycombs in 3D hyperbolic space:

Four regular compact honeycombs in H3
H3 534 CC center.png
{5,3,4}
H3 435 CC center.png
{4,3,5}
H3 353 CC center.png
{3,5,3}
H3 535 CC center.png
{5,3,5}

543 honeycombs

There are fifteen uniform honeycombs in the [5,3,4] Coxeter group family, including this regular form:

[5,3,4] family honeycombs
{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{5,3,4}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
rr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
tr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
t0,1,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
t0,1,2,3{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Error creating thumbnail: convert: improper image header `/usr/local/www/mediawiki/w/images/0/09/H3_534_CC_center.png' @ error/png.c/ReadPNGImage/4192.
convert: no images defined `/tmp//transform_535633baf3da.png' @ error/convert.c/ConvertImageCommand/3229.

Error code: 1
100px 100px 100px 100px 100px 100px 100px
H3 435 CC center.png 100px 100px 100px 100px 100px 100px
{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
rr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
2t{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
tr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
t0,1,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,1,2,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png

Polytopes with icosahedral vertex figures

It is in a sequence of polychora and honeycomb with icosahedron vertex figures:

Related polytopes and honeycombs with cubic cells

It in a sequence of regular polychora and honeycombs with cubic cells. The first polytope in the sequence is the tesseract, and the second is the Euclidean cubic honeycomb.

<templatestyles src="Template:Hidden begin/styles.css"/>
{4,3,p} regular honeycombs
Space S3 E3 H3
Form Finite Affine Compact Paracompact Noncompact
Name
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
{4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{4,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png
{4,3,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
{4,3,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
... {4,3,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Image Stereographic polytope 8cell.png Cubic honeycomb.png H3 435 CC center.png H3 436 CC center.png
Vertex
figure

CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
8-cell verf.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cubic honeycomb verf.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
60px
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
H2 tiling 237-4.png
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 238-4.png
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

Rectified order-5 cubic honeycomb

Rectified order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol r{4,3,5} or 2r{5,3,4}
2r{5,31,1}
Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node h0.pngCDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Cells r{4,3} Uniform polyhedron-43-t1.png
{3,5} Uniform polyhedron-53-t2.png
Faces triangle {3}
square {4}
Vertex figure 80px
pentagonal prism
Coxeter group BH3, [5,3,4]
DH3, [5,31,1]
Properties Vertex-transitive, edge-transitive

The rectified order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, has alternating icosahedron and cuboctahedron cells, with a pentagonal prism vertex figure.

480px

Related honeycomb

It can be seen as analogous to the 2D hyperbolic tetrapentagonal tiling, r{4,5} with square and pentagonal faces

There are four rectified compact regular honeycombs:

Four rectified regular compact honeycombs in H3
Image 100px 100px 100px 100px
Symbols r{5,3,4}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{3,5,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Vertex
figure
100px 100px 100px 100px
r{p,3,5}
Space S3 H3
Form Finite Compact Paracompact Noncompact
Name r{3,3,5}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{6,3,5}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{7,3,5}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
... r{∞,3,5}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Image 60px 80px 80px 80px
Cells
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{5,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{7,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-5 cubic honeycomb

Truncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol t{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells t{4,3} Uniform polyhedron-43-t01.png
{3,5} Uniform polyhedron-53-t2.png
Faces triangle {3}
square {4}
pentagon {5}
Vertex figure 80px
pentagonal pyramid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The truncated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png, has truncated cube and icosahedron cells, with a pentagonal pyramid vertex figure.

480px

It can be seen as analogous to the 2D hyperbolic truncated order-5 square tiling, t{4,5} with truncated square and pentagonal faces:

H2 tiling 245-6.png

It is similar to the Euclidean (order-4) truncated cubic honeycomb, t{4,3,4}, with octahedral cells at the truncated vertices.

240px

Related honeycombs

Four truncated regular compact honeycombs in H3
Image 100px 100px 100px 100px
Symbols t{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
t{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
t{3,5,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
t{5,3,5}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Vertex
figure
100px 100px 100px 100px

Bitruncated order-5 cubic honeycomb

Same as Bitruncated order-4 dodecahedral honeycomb

Cantellated order-5 cubic honeycomb

Cantellated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol rr{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
r{3,5} Uniform polyhedron-53-t1.png
{}x{5} Pentagonal prism.png
Faces triangle {3}
square {4}
pentagon {5}
Vertex figure 80px
wedge
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The cantellated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has rhombicuboctahedron and icosidodecahedron cells, with a wedge vertex figure.

480px

Related honeycombs

It is similar to the Euclidean (order-4) cantellated cubic honeycomb, rr{4,3,4}:

240px

Cantitruncated order-5 cubic honeycomb

Cantitruncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol tr{4,3,5}
Coxeter diagram CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
t{3,5} Uniform polyhedron-53-t12.png
Faces square {4}
pentagon {5}
hexagon {6}
octahedron {8}
Vertex figure 80px
Mirrored sphenoid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The cantitruncated order-5 cubic honeycomb, CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has rhombicuboctahedron and icosidodecahedron cells, with a mirrored sphenoid vertex figure.

480px

Related honeycombs

It is similar to the Euclidean (order-4) cantitruncated cubic honeycomb, tr{4,3,4}:

240px
Four cantitruncated regular compact honeycombs in H3
Image 100px 100px 100px 100px
Symbols tr{5,3,4}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
tr{4,3,5}
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
tr{3,5,3}
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
tr{5,3,5}
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Vertex
figure
100px 100px 100px 100px

Runcinated order-5 cubic honeycomb

Runcinated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Semiregular honeycomb
Schläfli symbol t0,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells {4,3} Uniform polyhedron-43-t0.png
{5,3} Uniform polyhedron-53-t0.png
{}x{5} Pentagonal prism.png
Faces Square {4}
Pentagon {5}
Vertex figure 80px
octahedron
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The runcinated order-5 cubic honeycomb or runcinated order-4 dodecahedral honeycomb CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, has cube, dodecahedron, and pentagonal prism cells, with an octahedron vertex figure.

480px

It is analogous the 2D hyperbolic rhombitetrapentagonal tiling, rr{4,5}, CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png with square and pentagonal faces:

240px

Related honeycombs

It is similar to the Euclidean (order-4) runcinated cubic honeycomb, t0,3{4,3,4}:

Runcinated cubic honeycomb.png
Three runcinated regular compact honeycombs in H3
Image 100px 100px 100px
Symbols t0,3{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
t0,3{3,5,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
t0,3{5,3,5}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png
Vertex
figure
100px Runcinated icosahedral honeycomb verf.png Runcinated order-5 dodecahedral honeycomb verf.png

Runcitruncated order-5 cubic honeycomb

Runctruncated order-5 cubic honeycomb
Runcicantellated order-4 dodecahedral honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol t0,1,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells t{4,3} Uniform polyhedron-43-t01.png
rr{5,3} Uniform polyhedron-53-t02.png
{}x{5} Pentagonal prism.png
{}x{8} Octagonal prism.png
Faces Triangle {3}
Square {4}
Pentagon {5}
Octagon {8}
Vertex figure 80px
quad-pyramid
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The runcitruncated order-5 cubic honeycomb or runcicantellated order-4 dodecahedral honeycomb CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png, has cube, dodecahedron, and pentagonal prism cells, with a quad-pyramid vertex figure.

480px

Related honeycombs

It is similar to the Euclidean (order-4) runcitruncated cubic honeycomb, t0,1,3{4,3,4}:

Runcitruncated cubic honeycomb.jpg

Omnitruncated order-5 cubic honeycomb

Omnitruncated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Semiregular honeycomb
Schläfli symbol t0,1,2,3{4,3,5}
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{5,3} Uniform polyhedron-53-t012.png
tr{4,3} Uniform polyhedron-43-t012.png
{10}x{} Decagonal prism.png
{8}x{} Octagonal prism.png
Faces Square {4}
Hexagon {6}
Octagon {8}
Decagon {10}
Vertex figure 80px
tetrahedron
Coxeter group BH3, [5,3,4]
Properties Vertex-transitive

The omnitruncated order-5 cubic honeycomb or omnitruncated order-4 dodecahedral honeycomb has Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png.

480px

Related honeycombs

It is similar to the Euclidean (order-4) omnitruncated cubic honeycomb, t0,1,2,3{4,3,4}:

240px

Alternated order-5 cubic honeycomb

Alternated order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,3} Tetrahedron.png
{3,5} Icosahedron.png
Faces triangle {3}
pentagon {5}
Vertex figure 80px
icosidodecahedron
Coxeter group DH3, [5,31,1]
Properties quasiregular

In 3-dimensional hyperbolic geometry, the alternated order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). With Schläfli symbol h{4,3,5}, it can be considered a quasiregular honeycomb, alternating icosahedra and tetrahedra around each vertex in an icosidodecahedron vertex figure.

Alternated order 5 cubic honeycomb.png

Related honeycombs

It has 3 related forms: the cantic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png, the runcic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.png, and the runcicantic order-5 cubic honeycomb, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png.

Cantic order-5 cubic honeycomb

Cantic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h2{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells r{5,3} Icosidodecahedron.png
t{3,5} Truncated icosahedron.png
t{3,3} Truncated tetrahedron.png
Faces Triangle {3}
Pentagon {5}
Hexagon {6}
Vertex figure 60px
Rectangular pyramid
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The cantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h2{4,3,5} and a rectangular pyramid vertex figure.

480px

Runcic order-5 cubic honeycomb

Runcic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h3{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node 1.png
Cells {5,3} Dodecahedron.png
rr{5,3} Small rhombicosidodecahedron.png
{3,3} Tetrahedron.png
Faces Triangle {3}
square {4}
pentagon {5}
Vertex figure 60px
triangular prism
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The runcic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h3{4,3,5} and a triangular prism vertex figure.

480px

Runcicantic order-5 cubic honeycomb

Runcicantic order-5 cubic honeycomb
Type Uniform honeycombs in hyperbolic space
Schläfli symbol h2,3{4,3,5}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 5.pngCDel node 1.png
Cells t{5,3} Truncated dodecahedron.png
tr{5,3} Great rhombicosidodecahedron.png
t{3,3} Truncated tetrahedron.png
Faces Triangle {3}
square {4}
hexagon {6}
dodecagon {10}
Vertex figure 60px
mirrored sphenoid
Coxeter group DH3, [5,31,1]
Properties Vertex-transitive

The runcicantic order-5 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb). It has Schläfli symbol h2,3{4,3,5} and a mirrored sphenoid vertex figure.

480px

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294-296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II,III,IV,V, p212-213)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2015) Chapter 13: Hyperbolic Coxeter groups