Order-5 hexagonal tiling honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-5 hexagonal tiling honeycomb
H3 635 FC boundary.png
Perspective projection view
from center of Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {6,3,5}
Coxeter-Dynkin diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {6,3} Uniform tiling 63-t0.png
Faces hexagon {6}
Edge figure pentagon {5}
Vertex figure {3,5}
Dual Order-6 dodecahedral honeycomb
Coxeter group HV3, [6,3,5]
Properties Regular

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is called paracompact because it has infinite cells. Each cell consists of a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the order-5 hexagonal tiling honeycomb is {6,3,5}. Since that of the hexagonal tiling of the plane is {6,3}, this honeycomb has five such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the icosahedron is {3,5}, the vertex figure of this honeycomb is an icosahedron. Thus, 20 hexagonal tilings meet at each vertex of this honeycomb.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A lower symmetry, [6,(3,5)*], index 120 construction exists with regular dodecahedral fundamental domains, and a icosahedral shaped Coxeter diagram with 6 axial infinite order (ultraparallel) branches.

Images

It is similar to the 2D hyperbolic regular tiling, {∞,5}, with infinite apeirogonal faces, and 5 meeting around every vertex (peak).

H2 tiling 25i-1.png

Related polytopes and honeycombs

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.

There are 15 uniform honeycombs in the [5,3,6] Coxeter group family, including this regular form and its regular dual, order-5 hexagonal tiling honeycomb, {6,3,5}.

[6,3,5] family honeycombs
{6,3,5} r{6,3,5} t{6,3,5} rr{6,3,5} t0,3{6,3,5} tr{6,3,5} t0,1,3{6,3,5} t0,1,2,3{6,3,5}
H3 635 FC boundary.png 80px
H3 536 CC center.png 80px
{5,3,6} r{5,3,6} t{5,3,6} rr{5,3,6} 2t{5,3,6} tr{5,3,6} t0,1,3{5,3,6} t0,1,2,3{5,3,6}

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png, having icosahedron and triangular tiling cells.

It is a part of sequence of regular honeycombs with hexagonal tiling hyperbolic honeycombs of the form {6,3,p}:

This honeycomb is a part of a sequence of polychora and honeycombs with icosahedron vertex figures:

Rectified order-5 hexagonal tiling honeycomb

Rectified order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,5} or t1{6,3,5}
2r{5,3[3]}
Coxeter diagrams CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,5} Uniform polyhedron-53-t2.png
r{6,3}, r{3[3]}
Uniform tiling 63-t1.pngUniform tiling 333-t01.png
Faces Triangle {3}
Pentagon {5}
Hexagon {6}
Vertex figure 80px
Pentagonal prism {}×{5}
Coxeter groups {\bar{VH}}_3, [6,3,5]
Properties Vertex-transitive, edge-transitive

The rectified order-5 hexagonal tiling honeycomb, t1{6,3,5}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png has icosahedron and trihexagonal tiling facets, with a pentagonal prism vertex figure.

320px

It is similar to the 2D hyperbolic infinite-order square tiling, r{∞,5} with pentagon and apeirogonal faces. All vertices are on the ideal surface.

H2 tiling 25i-2.png
r{p,3,5}
Space S3 H3
Form Finite Compact Paracompact Noncompact
Name r{3,3,5}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{4,3,5}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{5,3,5}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
r{6,3,5}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
r{7,3,5}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
... r{∞,3,5}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
Image 60px 80px 80px 80px
Cells
Icosahedron.png
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{5,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{7,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-5 hexagonal tiling honeycomb

Truncated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,5} or t0,1{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Cells {3,5} Uniform polyhedron-53-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces Triangle {3}
Pentagon {5}
Hexagon {6}
Vertex figure 80px
Pentagonal pyramid {}v{5}
Coxeter groups {\bar{VH}}_3, [6,3,5]
Properties Vertex-transitive

The truncated order-5 hexagonal tiling honeycomb, t0,1{6,3,5}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png has icosahedron and triangular tiling facets, with a pentagonal pyramid vertex figure.

Cantellated order-5 hexagonal tiling honeycomb

Cantellated order-5 hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,5} or t0,2{6,3,5}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png
Cells r{3,5} Uniform polyhedron-53-t1.png
rr{6,3} Uniform tiling 63-t02.png
Faces Triangle {3}
Pentagon {5}
Hexagon {6}
Vertex figure 80px
triangular prism
Coxeter groups {\bar{VH}}_3, [6,3,5]
Properties Vertex-transitive

The cantellated order-5 hexagonal tiling honeycomb, t0,2{6,3,5}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node.png has icosidodecahedron and rhombitrihexagonal tiling facets, with a triangular prism vertex figure.

See also

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III