Truncated 8-cubes
8-cube |
Truncated 8-cube |
Bitruncated 8-cube |
120px Tritruncated 8-cube |
120px Quadritruncated 8-cube |
8-orthoplex |
120px Truncated 8-orthoplex |
120px Bitruncated 8-orthoplex |
120px Tritruncated 8-orthoplex |
|
Orthogonal projections in BC8 Coxeter plane |
---|
In eight-dimensional geometry, a truncated 8-cube is a convex uniform 8-polytope, being a truncation of the regular 8-cube.
There are unique 7 degrees of truncation for the 8-cube. Vertices of the truncation 8-cube are located as pairs on the edge of the 8-cube. Vertices of the bitruncated 8-cube are located on the square faces of the 8-cube. Vertices of the tritruncated 7-cube are located inside the cubic cells of the 8-cube. The final truncations are best expressed relative to the 8-orthoplex.
Truncated 8-cube
Truncated 8-cube | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | t{4,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | Elongated 6-simplex pyramid |
Coxeter groups | BC8, [3,3,3,3,3,3,4] |
Properties | convex |
Alternate names
- Truncated octeract (acronym tocto) (Jonathan Bowers)[1]
Coordinates
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all 224 vertices are sign (4) and coordinate (56) permutations of
- (±2,±2,±2,±2,±2,±2,±1,0)
Images
B8 | B7 | ||||
---|---|---|---|---|---|
200px | |||||
[16] | [14] | ||||
B6 | B5 | ||||
200px | 200px | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] | |||
A7 | A5 | A3 | |||
200px | 200px | ||||
[8] | [6] | [4] |
Related polytopes
The truncated 8-cube, is seventh in a sequence of truncated hypercubes:
... | |||||||
Octagon | Truncated cube | Truncated tesseract | Truncated 5-cube | Truncated 6-cube | Truncated 7-cube | Truncated 8-cube | |
Bitruncated 8-cube
Bitruncated 8-cube | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 2t{4,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | BC8, [3,3,3,3,3,3,4] |
Properties | convex |
Alternate names
- Bitruncated octeract (acronym bato) (Jonathan Bowers)[2]
Coordinates
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all the sign coordinate permutations of
- (±2,±2,±2,±2,±2,±1,0,0)
Images
B8 | B7 | ||||
---|---|---|---|---|---|
200px | |||||
[16] | [14] | ||||
B6 | B5 | ||||
200px | 200px | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] | |||
A7 | A5 | A3 | |||
200px | 200px | ||||
[8] | [6] | [4] |
Related polytopes
The bitruncated 8-cube is sixth in a sequence of bitruncated hypercubes:
... | ||||||
Bitruncated cube | Bitruncated tesseract | Bitruncated 5-cube | Bitruncated 6-cube | Bitruncated 7-cube | Bitruncated 8-cube | |
Tritruncated 8-cube
Tritruncated 8-cube | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 3t{4,3,3,3,3,3,3} |
Coxeter-Dynkin diagrams | |
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | BC8, [3,3,3,3,3,3,4] |
Properties | convex |
Alternate names
- Tritruncated octeract (acronym tato) (Jonathan Bowers)[3]
Coordinates
Cartesian coordinates for the vertices of a truncated 8-cube, centered at the origin, are all the sign coordinate permutations of
- (±2,±2,±2,±2,±1,0,0,0)
Images
B8 | B7 | ||||
---|---|---|---|---|---|
200px | 200px | ||||
[16] | [14] | ||||
B6 | B5 | ||||
200px | 200px | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] | |||
A7 | A5 | A3 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] |
Quadritruncated 8-cube
Quadritruncated 8-cube | |
---|---|
Type | uniform 8-polytope |
Schläfli symbol | 4t{3,3,3,3,3,3,4} |
Coxeter-Dynkin diagrams |
|
6-faces | |
5-faces | |
4-faces | |
Cells | |
Faces | |
Edges | |
Vertices | |
Vertex figure | |
Coxeter groups | BC8, [3,3,3,3,3,3,4] D8, [35,1,1] |
Properties | convex |
Alternate names
- Quadritruncated octeract (acronym oke) (Jonathan Bowers)[4]
Coordinates
Cartesian coordinates for the vertices of a bitruncated 8-orthoplex, centered at the origin, are all sign and coordinate permutations of
- (±2,±2,±2,±2,±1,0,0,0)
Images
B8 | B7 | ||||
---|---|---|---|---|---|
200px | 200px | ||||
[16] | [14] | ||||
B6 | B5 | ||||
200px | 200px | ||||
[12] | [10] | ||||
B4 | B3 | B2 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] | |||
A7 | A5 | A3 | |||
200px | 200px | 200px | |||
[8] | [6] | [4] |
Related polytopes
Dim. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
Name | t{4} | r{4,3} | 2t{4,3,3} | 2r{4,3,3,3} | 3t{4,3,3,3,3} | 3r{4,3,3,3,3,3} | 4t{4,3,3,3,3,3,3} | |
Coxeter diagram |
||||||||
Images | 60px | 60px | 60px | 60px60px | 60px60px | ... | ||
Facets | {3} {4} |
t{3,3} t{3,4} |
r{3,3,3} r{3,3,4} |
2t{3,3,3,3} 2t{3,3,3,4} |
2r{3,3,3,3,3} 2r{3,3,3,3,4} |
3t{3,3,3,3,3,3} 30px 3t{3,3,3,3,3,4} |
||
Vertex figure |
Rectangle |
60px Disphenoid |
{3}×{4} duoprism |
{3,3}×{3,4} duoprism |
Notes
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- Richard Klitzing, 8D, uniform polytopes (polyzetta) o3o3o3o3o3o3x4x - tocto, o3o3o3o3o3x3x4o - bato, o3o3o3o3x3x3o4o - tato, o3o3o3x3x3o3o4o - oke
External links
- Olshevsky, George, Cross polytope at Glossary for Hyperspace.
- Polytopes of Various Dimensions
- Multi-dimensional Glossary
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |