Bispectrum

From Infogalactic: the planetary knowledge core
Jump to: navigation, search

In mathematics, in the area of statistical analysis, the bispectrum is a statistic used to search for nonlinear interactions.

Definitions

The Fourier transform of the second-order cumulant, i.e., the autocorrelation function, is the traditional power spectrum.

The Fourier transform of C3(t1t2) (third-order cumulant-generating function) is called the bispectrum or bispectral density.

Calculation

Applying the convolution theorem allows fast calculation of the bispectrum  B(f_1,f_2)=F^*(f_1+f_2).F(f_1).F(f_2), where F denotes the Fourier transform of the signal, and F^* its conjugate.

Generalizations

Bispectra fall in the category of higher-order spectra, or polyspectra and provide supplementary information to the power spectrum. The third order polyspectrum (bispectrum) is the easiest to compute, and hence the most popular.

A statistic defined analogously is the bispectral coherency or bicoherence.

Applications

<templatestyles src="Module:Hatnote/styles.css"></templatestyles>

Bispectrum and bicoherence may be applied to the case of non-linear interactions of a continuous spectrum of propagating waves in one dimension.[1]

Bispectral measurements have been carried out for EEG signals monitoring.[2] It was also shown that bispectra characterize differences between families of musical instruments.[3]

In seismology, signals rarely have adequate duration for making sensible bispectral estimates from time averages.

See also

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • HOSA - Higher Order Spectral Analysis Toolbox: A MATLAB toolbox for spectral and polyspectral analysis, and time-frequency distributions. The documentation explains polyspectra in great detail.