Trioctylphosphine oxide

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Trioctylphosphine oxide
Structural formula of trioctylphosphine oxide
Names
IUPAC name
Trioctyl-λ5-phosphanone
Other names
Tri-n-octylphosphine oxide
Identifiers
78-50-2 YesY
Abbreviations TOPO
1796648
ChemSpider 59020 YesY
EC Number 201-121-3
Jmol 3D model Interactive image
MeSH Trioctyl+phosphine+oxide
PubChem 65577
RTECS number SZ1662500
UN number 3077
  • InChI=1S/C24H51OP/c1-4-7-10-13-16-19-22-26(25,23-20-17-14-11-8-5-2)24-21-18-15-12-9-6-3/h4-24H2,1-3H3 YesY
    Key: ZMBHCYHQLYEYDV-UHFFFAOYSA-N YesY
  • InChI=1/C24H51OP/c1-4-7-10-13-16-19-22-26(25,23-20-17-14-11-8-5-2)24-21-18-15-12-9-6-3/h4-24H2,1-3H3
    Key: ZMBHCYHQLYEYDV-UHFFFAOYAY
  • CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC
Properties
C24H51OP
Molar mass 386.64 g·mol−1
Appearance White, opaque crystals
Melting point 50 to 54 °C (122 to 129 °F; 323 to 327 K)
Boiling point 411.2 °C (772.2 °F; 684.3 K) at 760 mmHg[1]
Vapor pressure {{{value}}}
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Trioctylphosphine oxide (TOPO) is an organophosphorus compound with the formula OP(C8H17)3. Frequently referred to as TOPO, this compound is used as an extraction or stabilizing agent. It is an air-stable white solid at room temperature.

Preparation and use

TOPO is usually prepared by oxidation of trioctylphosphine, which in turn is produced by alkylation of phosphorus trichloride.

The main use of TOPO is in solvent extraction of metals, especially uranium. The high lipophilicity and high polarity are properties key to this application. Its high polarity, which results from the dipolar phosphorus-oxygen bond, allows this compound to bind to metal ions. The octyl groups confer solubility in low polarity solvents such as kerosene.[2]

In the research laboratory, both trioctylphosphine and TOPO are frequently useful as a capping ligand for the production of quantum dots such as those consisting of CdSe. In these cases, TOPO serves as solvent for the synthesis and solubilizes the growing nanoparticles. TOPO-coated quantum dots are typically soluble in chloroform, toluene, and (to a lesser extent) hexane. These quantum dots are also used in biological applications as part of the protective barrier to prevent degradation as it travels through the harsh climate of the body.

References

  1. Lua error in package.lua at line 80: module 'strict' not found.
  2. Watson, E. K.; Rickelton, W. A. "A review of the industrial and recent potential applications of trioctylphosphine oxide" Solvent Extraction and Ion Exchange 1992, volume 10, pp. 879-89. doi:10.1080/07366299208918141