Order-6 tetrahedral honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-6 tetrahedral honeycomb
H3 336 CC center.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {3,3,6}
{3,3[3]}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
Cells {3,3} Uniform polyhedron-33-t0.png
Faces Triangle {3}
Edge figure Hexagon {6}
Vertex figure Triangular tiling {3,6}
Uniform tiling 63-t2.png Uniform tiling 333-t1.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Dual Hexagonal tiling honeycomb, {6,3,3}
Coxeter groups {\bar{V}}_3, [6,3,3]
{\bar{P}}_3, [3,3[3]]
Properties Regular, quasiregular

In the geometry of hyperbolic 3-space, the order-6 tetrahedral honeycomb a paracompact regular space-filling tessellation (or honeycomb). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}. It has six tetrahedra {3,3} around each edge. All vertices are ideal vertices with infinitely many tetrahedra existing around each ideal vertex in an triangular tiling vertex arrangement.[1]

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry constructions

It has a second construction as a uniform honeycomb, Schläfli symbol {3,3[3]}, with alternating types or colors of tetrahedral cells. In Coxeter notation the half symmetry is [3,3,6,1+] ↔ [3,((3,3,3))] or [3,3[3]]: CDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 6.pngCDel node h0.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel branch c3.png.

Related polytopes and honeycombs

It is similar to the 2-dimensional hyperbolic tiling, infinite-order triangular tiling, {3,∞}, having all triangle faces, and all ideal vertices.

H2checkers iii.png

Related regular honeycombs

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells and/or infinite vertex figures.

633 honeycombs

It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual hexagonal tiling honeycomb, {6,3,3}.

Tetrahedral cell honeycombs

It a part of a sequence of regular polychora and honeycombs with tetrahedral cells.

Triangular tiling vertex figures

It a part of a sequence of honeycombs with triangular tiling vertex figures.

Hyperbolic uniform honeycombs: {p,3,6} and {p,3[3]}
Form Paracompact Noncompact
Name {3,3,6}
{3,3[3]}
{4,3,6}
{4,3[3]}
{5,3,6}
{5,3[3]}
{6,3,6}
{6,3[3]}
{7,3,6}
{7,3[3]}
{8,3,6}
{8,3[3]}
... {∞,3,6}
{∞,3[3]}
CDel node 1.pngCDel p.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel p.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel splitplit1u.pngCDel branch4u 11.pngCDel uabc.pngCDel branch4u.pngCDel splitplit2u.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 7.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 8.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel infin.pngCDel node.pngCDel split1.pngCDel branch.png
Image H3 336 CC center.png H3 436 CC center.png H3 536 CC center.png H3 636 FC boundary.png
Cells Tetrahedron.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Hexahedron.png
{4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
Dodecahedron.png
{5,3}
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
Uniform tiling 63-t0.png
{6,3}
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 237-1.png
{7,3}
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 238-1.png
{8,3}
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
H2 tiling 23i-1.png
{∞,3}
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png

Rectified order-6 tetrahedral honeycomb

Rectified order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbols r{3,3,6} or t1{3,3,6}
Coxeter diagrams CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png
Cells {3,4} Uniform polyhedron-33-t1.png
{3,6} Uniform tiling 63-t2.png
Vertex figure 100px
Hexagonal prism { }×{6}
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 6.pngCDel node.png
Coxeter groups {\bar{V}}_3, [6,3,3]
{\bar{P}}_3, [3,3[3]]
Properties Vertex-transitive, edge-transitive

The rectified order-6 tetrahedral honeycomb, t1{3,3,6} has octahedral and triangular tiling cells connected in a hexagonal prism vertex figure.

240px180px
Perspective projection view within Poincaré disk model
r{p,3,6}
Space H3
Form Paracompact Noncompact
Name r{3,3,6}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{4,3,6}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{5,3,6}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{6,3,6}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{7,3,6}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
... r{∞,3,6}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Image 80px 80px 80px 80px
Cells
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{6,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{∞,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-6 tetrahedral honeycomb

Truncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{3,3,6} or t0,1{3,3,6}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch.png
Cells t{3,3} Uniform polyhedron-33-t01.png
{3,6} Uniform tiling 63-t2.png
Vertex figure 100px
Hexagonal pyramid { }v{6}
Coxeter groups {\bar{V}}_3, [6,3,3]
{\bar{P}}_3, [3,3[3]]
Properties Vertex-transitive

The truncated order-6 tetrahedral honeycomb, t0,1{3,3,6} has truncated tetrahedra and triangular tiling cells connected in a hexagonal prism vertex figure.

Bitruncated order-6 tetrahedral honeycomb

Same as Bitruncated hexagonal tiling honeycomb

Cantellated order-6 tetrahedral honeycomb

Cantellated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{3,3,6} or t0,2{3,3,6}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel branch 11.png
Cells r{3,3} Uniform polyhedron-33-t02.png
r{3,6} Uniform tiling 63-t1.png
{}x{6} Hexagonal prism.png
Vertex figure 100px
tetrahedron
Coxeter groups {\bar{V}}_3, [6,3,3]
{\bar{P}}_3, [3,3[3]]
Properties Vertex-transitive

The cantellated order-6 tetrahedral honeycomb, t0,2{3,3,6} has cuboctahedron and trihexagonal tiling cells connected in a tetrahedron vertex figure.

Cantitruncated order-6 tetrahedral honeycomb

Cantitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols tr{3,3,6} or t0,1,2{3,3,6}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel branch 11.png
Cells tr{3,3} Uniform polyhedron-33-t012.png
r{3,6} Uniform tiling 63-t1.png
{}x{6} Hexagonal prism.png
Vertex figure 100px
tetrahedron
Coxeter groups {\bar{V}}_3, [6,3,3]
{\bar{P}}_3, [3,3[3]]
Properties Vertex-transitive

The cantitruncated order-6 tetrahedral honeycomb, t0,1,2{3,3,6} has truncated cuboctahedron and trihexagonal tiling cells connected in an octahedron vertex figure.

See also

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III