Aluminium oxynitride

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Aluminium oxynitride
Systematic IUPAC name
Aluminium oxynitride
12633-97-5 YesY
Abbreviations ALON
0.30 ≤ x ≤ 0.37
Appearance White or transparent solid
Density 3.691–3.696 g/cm3[1]
Melting point ~2150 °C[1]
cubic spinel
a = 794.6 pm[2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Aluminium oxynitride or AlON is a ceramic composed of aluminium, oxygen and nitrogen. It is marketed under the name ALON by Surmet Corporation.[3] ALON is optically transparent (≥80%) in the near-ultraviolet, visible and midwave-infrared regions of the electromagnetic spectrum. It is 4 times harder than fused silica glass, 85% as hard as sapphire, and nearly 15% harder than magnesium aluminate spinel. Since it has a cubic spinel structure, it can be fabricated to transparent windows, plates, domes, rods, tubes and other forms using conventional ceramic powder processing techniques. AlON is the hardest polycrystalline transparent ceramic available commercially.[2] Combination of optical and mechanical properties makes this material a leading candidate for lightweight high-performance transparent armor applications such as bulletproof and blast-resistant windows and for many military infrared optics. AlON-based armor has been shown to stop multiple armor-piercing projectiles of up to 50 cal.[4] It is commercially available in sizes as big as 18x35-inch monolithic windows.[5]


Thermal and optical[6]

ALON also appears to be radiation-resistant and resistant to damage from various acids, bases, and water.[7]


In addition to being used as Transparent Armor material, AlON is used as infrared-optical windows. As such it has applications as a sensor component, specialty IR domes, windows for laser communications, and in some semiconductor-related applications.[8][9]

Bulletproof glass

As a transparent armor material, it provides a bulletproof product with far less weight and thickness than traditional bulletproof glass. It has been dubbed Transparent aluminum (per Star Trek).[10] 1.6" thick ALON armor is capable of stopping .50 BMG armor-piercing rounds, which can penetrate 3.7" of traditional glass laminate.[11]


AlON can be fabricated as windows, plates, domes, rods, tubes and other forms using conventional ceramic powder processing techniques. Its composition can vary slightly: the aluminium content from about 30% to 36%, which has been reported to affect the bulk and shear moduli by only 1–2%.[12]) The fabricated greenware is subjected to heat treatment (densification) at elevated temperatures followed by grinding and polishing to transparency. It can withstand temperatures of about 2100 °C in inert atmospheres. The grinding and polishing substantially improves the impact resistance and other mechanical properties of armor.[6]

See also


  • Process for producing polycrystalline cubic aluminum oxynitride JW McCauley U.S. Patent 4,241,000, 1980
  • Aluminum oxynitride having improved optical characteristics and method of manufacture TM Hartnett, RL Gentilman U.S. Patent 4,481,300, 1984
  • Transparent aluminum oxynitride and method of manufacture RL Gentilman, EA Maguire U.S. Patent 4,520,116, 1985
  • Transparent aluminum oxynitride and method of manufacture RL Gentilman, EA Maguire U.S. Patent 4,720,362, 1988
  • Transparent aluminum oxynitride-based ceramic article JP Mathers U.S. Patent 5,231,062, 1993


  1. 1.0 1.1 Sales (2003). "ALON Optical Ceramic. Technical data" (.PDF). Surmet Corporation. Retrieved 2009-01-09. Cite journal requires |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. 2.0 2.1 2.2 2.3 Mohan Ramisetty et al. Transparent Polycrystalline Spinels Protect and Defend, American Ceramic Society Bulletin, vol.92, 2, 20–24 (2013)
  3. Richard L. Gentilman et al. Transparent aluminum oxynitride and method of manufacture U.S. Patent 4,520,116 Issue date: May 28, 1985
  4. M. Ramisetty et al., Photonics Spectra, Aug 2013
  6. 6.0 6.1 Joseph M. Wahl et al. Recent Advances in ALONTM Optical Ceramic, Surmet
  7. Corbin, N (1989). "Aluminum oxynitride spinel: A review". Journal of the European Ceramic Society. 5 (3): 143–154. doi:10.1016/0955-2219(89)90030-7.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Lee M. Goldman et al. ALON® Optical Ceramic Transparencies for Sensor and Armor Applications, Surmet
  9. Zhu, Ming; Tung, Chih-Hang; Yeo, Yee-Chia (2006). "Aluminum oxynitride interfacial passivation layer for high-permittivity gate dielectric stack on gallium arsenide". Applied Physics Letters. 89 (20): 202903. doi:10.1063/1.2388246.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  10. Optically Clear Aluminum Provides Bulletproof Protection, TSS, 3 June 2015, accessed 10 July 2015
  11. Surmet's ALON® Transparent Armor 50 Caliber Test
  12. Graham, Earl K.; Munly, W.C.; McCauley, James W.; Corbin, Norman D. (1988). "Elastic properties of polycrystalline aluminum oxynitride spinel and their dependence on pressure, temperature and composition". Journal of the American Ceramic Society. 71 (10): 807–812. doi:10.1111/j.1151-2916.1988.tb07527.x.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

External links