Order-6 cubic honeycomb

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Order-6 cubic honeycomb
H3 436 CC center.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {4,3,6}
{4,3[3]}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node.png
Cells {4,3} Hexahedron.png
Faces square {4}
Edge figure pentagon {6}
Vertex figure triangular tiling {3,6}
Uniform tiling 63-t2.png Uniform tiling 333-t1.png
Coxeter group BV3, [6,3,4]
BP3, [4,3[3]]
Dual Order-4 hexagonal tiling honeycomb
Properties Regular, quasiregular

The order-6 cubic honeycomb is a paracompact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With schläfli symbol {4,3,6}, it is constructed from six cubes exist on each edge. Its vertex figure is an infinite triangular tiling. It is dual is the order-4 hexagonal tiling honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Images

It is similar to the 2D hyperbolic infinite-order square tiling, {4,∞} with square faces. All vertices are on the ideal surface.

H2 tiling 24i-4.png

Symmetry

A half symmetry construction exists as {4,3[3]}, with alternating two types (colors) of cubic cells. CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. Another lower symmetry, [4,3*,6], index 6 exists with a nonsimplex fundamental domain, CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png.

This honeycomb contains CDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node 1.png that tile 2-hypercycle surfaces, similar to this paracompact tiling, CDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node 1.png:

H2 tiling 23i-1.png

Related polytopes and honeycombs

It is one of 15 regular hyperbolic honeycombs in 3-space, 11 of which like this one are paracompact, with infinite cells or vertex figures.

It is related to the regular (order-4) cubic honeycomb of Euclidean 3-space, order-5 cubic honeycomb in hyperbolic space, which have 4 and 5 cubes per edge respectively.

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png, having hexagonal tiling and tetrahedron cells.

There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including this regular form.

It in a sequence of regular polychora and honeycombs with cubic cells.

<templatestyles src="Template:Hidden begin/styles.css"/>
{4,3,p} regular honeycombs
Space S3 E3 H3
Form Finite Affine Compact Paracompact Noncompact
Name
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
{4,3,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
{4,3,4}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.pngCDel 2.pngCDel labelinfin.pngCDel branch 10.png
{4,3,5}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
{4,3,6}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png
{4,3,7}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
{4,3,8}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel label4.png
... {4,3,∞}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel labelinfin.png
Image Stereographic polytope 8cell.png Cubic honeycomb.png H3 435 CC center.png H3 436 CC center.png
Vertex
figure

CDel node 1.pngCDel 3.pngCDel node.pngCDel p.pngCDel node.png
8-cell verf.png
{3,3}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cubic honeycomb verf.png
{3,4}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.png
60px
{3,5}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.png
H2 tiling 237-4.png
{3,7}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png
H2 tiling 238-4.png
{3,8}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel label4.png
H2 tiling 23i-4.png
{3,∞}
CDel node 1.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel labelinfin.png

It a part of a sequence of honeycombs with triangular tiling vertex figures.

Hyperbolic uniform honeycombs: {p,3,6}
Form Paracompact Noncompact
Name {3,3,6} {4,3,6} {5,3,6} {6,3,6} {7,3,6} {8,3,6} ... {∞,3,6}
Image H3 336 CC center.png H3 436 CC center.png H3 536 CC center.png H3 636 FC boundary.png
Cells Tetrahedron.png
{3,3}
Hexahedron.png
{4,3}
Dodecahedron.png
{5,3}
Uniform tiling 63-t0.png
{6,3}
H2 tiling 237-1.png
{7,3}
H2 tiling 238-1.png
{8,3}
H2 tiling 23i-1.png
{∞,3}

Rectified order-6 cubic honeycomb

Rectified order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{4,3,6} or t1{4,3,6}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Cells r{3,4} Uniform polyhedron-43-t1.png
{3,6} Uniform tiling 63-t2.png
Faces Triangle {3}
Square {4}
Vertex figure 80px
hexagonal prism {}×{6}
Coxeter groups BV3, [6,3,4]
DV3, [6,31,1]
[4,3[3]]
[3[ ]×[3]]
Properties Vertex-transitive, edge-transitive

The rectified order-6 cubic honeycomb, r{4,3,6}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png has cuboctahedral and triangular tiling facets, with a hexagonal prism vertex figure.

320px

It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{4,∞}, CDel node.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png alternating apeirogonal and square faces:

H2 tiling 24i-2.png
r{p,3,6}
Space H3
Form Paracompact Noncompact
Name r{3,3,6}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{4,3,6}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{5,3,6}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{6,3,6}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
r{7,3,6}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
... r{∞,3,6}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Image 80px 80px 80px 80px
Cells
Uniform tiling 63-t2.png
{3,6}
CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
Uniform polyhedron-33-t1.png
r{3,3}
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cuboctahedron.png
r{4,3}
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Icosidodecahedron.png
r{6,3}
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.png
r{6,3}
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 237-2.png
r{∞,3}
CDel node.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
H2 tiling 23i-2.png
r{∞,3}
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png

Truncated order-6 cubic honeycomb

Truncated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{4,3,6} or t0,1{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Cells t{4,3} Uniform polyhedron-43-t01.png
{3,6}Uniform tiling 63-t2.png
Faces Triangle {3}
octagon {8}
Vertex figure 80px
hexagonal pyramid
Coxeter groups BV3, [6,3,4]
[4,3[3]]
Properties Vertex-transitive

The truncated order-6 cubic honeycomb, t{4,3,6}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png has truncated octahedron and triangular tiling facets, with a hexagonal pyramid vertex figure.

It is similar to the 2D hyperbolic truncated infinite-order square tiling, t{4,∞}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png with apeirogonal and octagonal (truncated square) faces:

H2 tiling 24i-6.png

Cantellated order-6 cubic honeycomb

Cantellated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{4,3,6} or t0,2{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
r{3,6} Uniform tiling 63-t1.png
Faces Triangle {3}
square {4}
hexagon {6}
octagon {8}
Vertex figure 80px
triangular prism
Coxeter groups BV3, [6,3,4]
[4,3[3]]
Properties Vertex-transitive

The cantellated order-6 cubic honeycomb, rr{4,3,6}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png has rhombicuboctahedron and trihexagonal tiling facets, with a triangular prism vertex figure.

Alternated order-6 cubic honeycomb

Alternated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol h{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
CDel node h.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes hh.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node.png
Cells {3,3} Tetrahedron.png
{3,6} Uniform tiling 63-t2.png
Faces Triangle {3}
Vertex figure Uniform tiling 63-t1.png
trihexagonal tiling
Coxeter group DV3, [6,31,1]
Properties Vertex-transitive, edge-transitive, quasiregular

In 3-dimensional hyperbolic geometry, the alternated order-6 hexagonal tiling honeycomb is a uniform compact space-filling tessellations (or honeycombs). As an alternated order-6 cubic honeycomb and Schläfli symbol h{4,3,6}, with Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png or CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png. It can be considered a quasiregular honeycomb, alternating triangular tiling and tetrahedron around each vertex in an trihexagonal tiling vertex figure.

Symmetry

A half symmetry construction exists from {4,3[3]}, with alternating two types (colors) of cubic cells. CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. Another lower symmetry, [4,3*,6], index 6 exists with a nonsimplex fundamental domain, CDel node h.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes hh.png.

Related honeycombs

It has 3 related form cantic order-6 cubic honeycomb, h2{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png, runcic order-6 cubic honeycomb, h3{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png, runcicantic order-6 cubic honeycomb, h2,3{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png.

Cantic order-6 cubic honeycomb

Cantic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png
Cells t{3,3} Truncated tetrahedron.png
r{6,3} Uniform tiling 63-t1.png
{6,3} Uniform tiling 63-t01.png
Faces Triangle {3}
hexagon {6}
Vertex figure
Coxeter group DV3, [6,31,1]
Properties Vertex-transitive

The cantic order-6 cubic honeycomb is a uniform compact space-filling tessellations (or honeycombs) with Schläfli symbol h2{4,3,6}.

Runcic order-6 cubic honeycomb

Runcic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h3{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
Cells {3,3} Tetrahedron.png
{6,3} Uniform tiling 63-t0.png
rr{6,3} Uniform tiling 63-t02.png
Faces Triangle {3}
hexagon {6}
Vertex figure triangular prism
Coxeter group DV3, [6,31,1]
Properties Vertex-transitive

The runcic order-6 cubic honeycomb is a uniform compact space-filling tessellations (or honeycombs). With Schläfli symbol h3{4,3,6}, with a triangular prism vertex figure.

Runcicantic order-6 cubic honeycomb

Runcicantic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2,3{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
Cells {6,3} Uniform tiling 63-t0.png
tr{6,3} Uniform tiling 63-t012.png
{3,3} Tetrahedron.png
Faces Triangle {3}
square {4}
Vertex figure tetrahedron
Coxeter group DV3, [6,31,1]
Properties Vertex-transitive

The runcicantic order-6 cubic honeycomb is a uniform compact space-filling tessellations (or honeycombs). With Schläfli symbol h2,3{4,3,6}, with a tetrahedral vertex figure.

See also

References