Brown marmorated stink bug

From Infogalactic: the planetary knowledge core
Jump to: navigation, search
Brown marmorated stink bug
File:Halyomorpha halys lab.jpg
Adult female
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
H. halys
Binomial name
Halyomorpha halys
Stål, 1855[1]

Lua error in Module:Taxonbar/candidate at line 22: attempt to index field 'wikibase' (a nil value).

Halyomorpha halys, also known as the brown marmorated stink bug (BMSB), or simply the stink bug, is an insect in the family Pentatomidae that is native to China, Japan and Taiwan.[2] It was accidentally introduced into the United States, with the first specimen being collected in September 1998.[3] The brown marmorated stink bug is considered to be an agricultural pest,[4] and by 2010–11 had become a season-long pest in U.S. orchards.[5]

Description

The adults are approximately 1.7 centimetres (0.67 in) long and about as wide, forming the shield shape characteristic of other stink bugs. They are various shades of brown on both the top and undersides, with gray, off-white, black, copper, and bluish markings. Markings unique to this species include alternating light bands on the antennae and alternating dark bands on the thin outer edge of the abdomen. The legs are brown with faint white mottling or banding. The stink glands are located on the underside of the thorax, between the first and second pair of legs, and on the dorsal surface of the abdomen.[6]

Behavior

The brown marmorated stink bug is an agricultural pest that can cause widespread damage to fruit and vegetable crops. In Japan it is a pest to soybean and fruit crops. In the U.S., the brown marmorated stink bug feeds, beginning in late May or early June, on a wide range of fruits, vegetables, and other host plants including peaches, apples, green beans, soybeans, cherries, raspberries, and pears. It is a sucking insect, a "true bug", that uses its proboscis to pierce the host plant in order to feed. This feeding results, in part, in the formation of dimpled or necrotic areas on the outer surface of fruits, leaf stippling, seed loss, and possible transmission of plant pathogens.

The brown marmorated stink bug is more likely to invade homes in the fall than others in the family.[7] The bug survives the winter as an adult by entering houses and structures when autumn evenings become colder, often in the thousands. In one home more than 26,000 stinkbugs were found overwintering.[8] Adults can live from several months to a year.[9][10] They will enter under siding, into soffits, around window and door frames, chimneys, or any space which has openings big enough to fit through. Once inside the house, they will go into a state of hibernation. They wait for winter to pass, but often the warmth inside the house causes them to become active, and they may fly clumsily around light fixtures. Two important vectors of this pest are landscape ornamentals Tree of Heaven and Princess Tree.[11]

The odor from the stink bug is due to trans-2-decenal and trans-2-Octenal.[12] The smell has been characterized as a "pungent odor that smells like coriander."[5]

The stink bug's ability to emit an odor through holes in its abdomen is a defense mechanism meant to prevent it from being eaten by birds and lizards. However, simply handling the bug, injuring it, or attempting to move it can trigger it to release the odor.

In the United States

The brown marmorated stink bug was accidentally introduced into the United States from China or Japan. It is believed to have hitched a ride as a stowaway in packing crates or on various types of machinery. The first documented specimen was collected in Allentown, Pennsylvania, in September 1998.[4][13] Several Muhlenberg College students were reported to have seen these bugs as early as August of that same year.[7][14] Between 2001 and 2010 there were fifty-four reported sightings of BMSB at shipping ports in the United States.[15] However, stink bugs are listed as non-reportable, meaning that they do not need to be reported or have any required action taken to remove the insect. This allowed the insect to enter the United States relatively easily as they are able to survive long periods of time in hot or cold conditions.

Other reports have the brown marmorated stink bug recovered as early as 2000 in New Jersey from a black light trap run by the Rutgers Cooperative Extension (RCE) Vegetable Integrated Pest Management program in Milford, New Jersey[16] In 2002, it was again collected in New Jersey from black light traps located in Phillipsburg and Little York and was found on plant material in Stewartsville. It was quickly documented and established in many counties in Pennsylvania, New Jersey, Delaware, Connecticut and New York on the eastern coast of the United States. By 2009, this agricultural pest had reached Maryland, West Virginia, Virginia, Tennessee, North Carolina, Kentucky, Ohio, Illinois, and Oregon.[17] In 2010 this pest was found in additional states including Indiana,[18] Michigan,[19] Minnesota,[20] and other states.[21] As of November 2011 it has spread to 34 U.S. states[5] and by 2012 to 40 and showed an increase of 60% in total numbers over 2011.[22]

Population increase

File:Loz stinkbug.png
Stink bug photographed at an angle

As of 2010, seventeen states have been categorized as having established BMSB populations, with several other states along the eastern half of the United States were reported as having more than normal numbers of stink bugs.[23][24] Currently stink bug populations are on the rise due to the fact that the climate in the United States is ideal for their reproduction. In optimal conditions an adult stink bug will develop within 35 to 45 days after hatching.[15] Female stink bugs are capable of laying four hundred eggs in their lifetime, even further guaranteeing their populations success.[25] BMSB is also capable of producing at least one successful generation in all areas of the United States, no matter the climate. In warmer climates in states such as California, Arizona, Florida, Louisiana, and Texas stink bugs have the ability to reproduce up to six successful generations.[15] Their early success in states such as Maryland and Virginia were marked by an unusual warm spring and summer, allowing the insects to produce an additional two generations.[26][27] The addition of two more generations allowed the population to explode, leading to the establishment of several other populations in neighboring states. Currently there does not appear to be any environmental limiting factors that are slowing their distribution across the United States. They also are extremely mobile insects capable of moving from host to host without causing disruption in their reproductive processes. At the moment it is estimated that BMSB populations will continue to grow and spread to other states, especially during unusual periods of warm weather.

Agricultural Effects

File:BMSB-US-CAN-map small05062013.png
Effects of the Brown Marmorated Stink Bug

The brown marmorated stink bug is a serious agricultural pest that has been readily causing damage to crops across the Eastern United States. They feed on a wide array of plants including apples, apricots, Asian pears, cherries, corn, grapes, lima beans, peaches, peppers, tomatoes, and soybeans.[28] This makes them extremely versatile as they do not require a specific plant to feed on. To obtain their food stink bugs use their stylets to pierce the plant tissue in order to extract the plant fluids.[29] In doing so the plant loses necessary fluids that can lead to deformation of seeds, destruction of seeds, destruction of fruiting structures, delayed plant maturation, and increased vulnerability to harmful pathogens.[29] While harvesting the plants juices the stink bug injects saliva into the plant creating a dimpling of the fruit’s surface, and rotting of the material underneath. The most common signs of stink bug damage are pitting and scaring of the fruit, leaf destruction, and a mealy texture to the harvested fruits and vegetables. In most cases the signs of stink bug damage makes the plant unsuitable for sale in the market as the insides are usually rotten. In field crops such as corn and soy beans the damage may not be as evident as the damage seen in fruit plants. When stick bugs feed on corn they go through the husk before eating the kernels, hiding the damage until the husks are removed during harvesting. The same damage is seen in soy beans as the stink bug goes through the seed pods to acquire the juices of the seeds. One visual cue of stink bug damage to soybean crops is the “stay green” effect, where damaged soybean plants stay green late into season, while other plants in the field die off normally. One can usually tell that a field of crops is infected because stink bugs are known for the "edge effect", in which they tend to infest crops thirty to forty feet from the edge of the field. Farmers or individuals who suspect having stink bugs in their crops should contact your State Department of Agriculture for information on how to manage the infestation and possible way to prevent future incidences.

Control

Control of stink bugs is a priority of the Department of Agriculture which has developed an artificial pheromone which can be used to bait traps.[citation needed] Because the bugs insert their proboscis below the surface of fruit and then feed, some insecticides are ineffective; in addition, the bugs are mobile, and a new population may fly in after the resident population has been killed, making permanent removal nearly impossible. In the case of soybean infestations research shows that spraying only the perimeter of a field may be the most effective method of preventing stinkbugs from damaging the crops. However even this method is limited as new populations move back into the area, or the existing population simply moves to unaffected areas. There is also evidence that stink bugs are developing a resistance to pyrethoid insecticides, a common chemical used to combat infestations.[15] Other insecticides currently in field trials that are showing promising results are oxamly (96% mortality rate) and moribund (67% mortality rate).[15] Many other commonly used insecticides are merely used to keep the insects out of fields, rather than actually killing them. The most successful method of protecting apples found thus far is the use of Kaolin clay.[15] As of 2012, native predators such as wasps and birds were showing increased signs of feeding on the bugs as they adapt to the new food source.[22] Managing this pest species is challenging because there are currently few effective pesticides that are labeled for use against them. Researchers are looking into ways to effectively control this species but many more experiments are needed to develop a consistent pesticide.

Similarity in appearance to native species

Easily confused with Brochymena and Euschistus, the best identification for adults is the white band on the antennae. It is similar in appearance to other native species of shield bug including Acrosternum, Euschistus, and Podisus, except that several of the abdominal segments protrude from beneath the wings and are alternatively banded with black and white (visible along the edge of the bug even when wings are folded) and a white stripe or band on the next to last (4th) antennal segment.[30] The adult rice stink bug (Oebalus pugnax) is distinguishable from the brown marmorated stink bug by noting the straw color, the smaller size, and the elongated shape of the rice stink bug.[31]

Predators

In China, Trissolcus japonicus,[32] a parasitoid wasp species in the family Scelionidae, is a primary predator.[33] This species is not currently present in the U.S., but is undergoing study for possible introduction.[5] The major problem with this idea is the possibility that japonicus will also become an invasive species with no native predators. Before introducing the Chinese wasp, scientists are trying to find natural predators of the stink bug already present in the United Sates. To do so they have studied other species of parastoid wasps native to the United States. They found that several other species of the parasitoid wasps attacked stink bug eggs in Virginia soybean fields.[34] Researchers have also experimented with different spider species as well as the wheel bug. Several spider species attacked both the eggs as well as live stink bugs. Woodlice eat stinkbug eggs.[35] The Wheel bug, however, was the most voracious predator and attacked the eggs as well as stink bugs more consistently.[36] Scientists are hoping that other animals such as birds will eventually began preying on stink bugs as populations continue to rise.

Gallery

See also

References

  1. Wermelinger, Beat; Denise Wyniger; Beat Forster. 2008. First records of an invasive bug in Europe: Halyomorpha halys Stål (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees? Mitteilungen der Schweizerischen Entomologischen Gesellschaft: Bulletin de la Société Entomologique Suisse 81: 1–8.
  2. Lua error in package.lua at line 80: module 'strict' not found.
  3. Lua error in package.lua at line 80: module 'strict' not found.
  4. 4.0 4.1 Lua error in package.lua at line 80: module 'strict' not found.
  5. 5.0 5.1 5.2 5.3 Lua error in package.lua at line 80: module 'strict' not found.
  6. Lua error in package.lua at line 80: module 'strict' not found.
  7. 7.0 7.1 Lua error in package.lua at line 80: module 'strict' not found.
  8. Inkley DB, 2012. Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). Journal of Entomological Science, 47(2):125–130.
  9. Lua error in package.lua at line 80: module 'strict' not found.
  10. Lua error in package.lua at line 80: module 'strict' not found.
  11. Wallner AM, Hamilton GC, Nielsen AL, Hahn N, Green EJ, et al. (2014) "Landscape Factors Facilitating the Invasive Dynamics and Distribution of the Brown Marmorated Stink Bug, Halyomorphahalys (Hemiptera: Pentatomidae), after Arrival in the United States" PLoS ONE 9(5): e95691. doi:10.1371/journal.pone.0095691
  12. Lua error in package.lua at line 80: module 'strict' not found.
  13. Lua error in package.lua at line 80: module 'strict' not found.
  14. Lua error in package.lua at line 80: module 'strict' not found.
  15. 15.0 15.1 15.2 15.3 15.4 15.5 ARS. 2010b. Brown Marmorated Stink Bug: Research Updates. USDA-ARS, Kearneysville, WV. 6 pp.
  16. Lua error in package.lua at line 80: module 'strict' not found.
  17. Lua error in package.lua at line 80: module 'strict' not found.
  18. Lua error in package.lua at line 80: module 'strict' not found.
  19. Lua error in package.lua at line 80: module 'strict' not found.
  20. Lua error in package.lua at line 80: module 'strict' not found.
  21. Lua error in package.lua at line 80: module 'strict' not found.
  22. 22.0 22.1 Lua error in package.lua at line 80: module 'strict' not found.
  23. Lua error in package.lua at line 80: module 'strict' not found.
  24. Lua error in package.lua at line 80: module 'strict' not found.
  25. Lua error in package.lua at line 80: module 'strict' not found.
  26. Lua error in package.lua at line 80: module 'strict' not found.
  27. Lua error in package.lua at line 80: module 'strict' not found.
  28. Lua error in package.lua at line 80: module 'strict' not found.
  29. 29.0 29.1 McPherson, J. E., and R. M. McPherson. 2000. Stink Bugs of Economic Importance in America North of Mexico, Boca Raton, FL. 253 pp.
  30. Lua error in package.lua at line 80: module 'strict' not found.
  31. Lua error in package.lua at line 80: module 'strict' not found.
  32. Talamas EJ, Buffington M, Hoelmer K (2013) New synonymy of Trissolcus halyomorphae Yang. Journal of Hymenoptera Research 33: 113–117. doi: 10.3897/JHR.33.5627
  33. Lua error in package.lua at line 80: module 'strict' not found.
  34. Lua error in package.lua at line 80: module 'strict' not found.
  35. Lua error in package.lua at line 80: module 'strict' not found.
  36. http://www.stopbmsb.org/stopBMSB/assets/File/Research/BMSB-SAP-Dec-2013/Native-Natural-Enemies-Shrewsbury.pdf

Further reading

  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.
  • Lua error in package.lua at line 80: module 'strict' not found.

External links